Graph-theoretic properties of scales: Difference between revisions
Wikispaces>genewardsmith **Imported revision 359476563 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 359498985 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-08-23 | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-08-23 14:31:26 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>359498985</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 67: | Line 67: | ||
The genus of the 7-limit diatonic scale is 1, with maximal genus of 4. The connectivities go 3.198 ≤ 4 ≤ 4, and the radius and diameter are both 2. | The genus of the 7-limit diatonic scale is 1, with maximal genus of 4. The connectivities go 3.198 ≤ 4 ≤ 4, and the radius and diameter are both 2. | ||
[[image:diatonic7.gif]]</pre></div> | [[image:diatonic7.gif]] | ||
==The dekany== | |||
The standard 2)5 dekany is a [[Combination product sets|combination product set]], Cps([2,3,5,7,11], 2). It consists of ten notes associated to two-element subset of the set of the first five primes, {2,3,5,7,11}, and in one mode is 12/11-5/4-14/11-15/11-3/2-35/22-7/4-20/11-21/11, which we will take as its notes from note 0 to note 9. It has 30 edges, with connectivities 5 ≤ 6 ≤ 6, and the largest element of the Laplace spectrum is 8, so that the complementary graph is also connected. Its radius and diameter are both 2. | |||
The automorphism group is S5, the symmetric group of order 120 on a set of five points, which in this case are the five prime numbers to 11. Any permutation acts faithfully on the notes of the dekany, inducing the transitive permutation representation called 10T13 of S5 on ten points. The dekany has five maximal 4-cliques (tetrads) and ten maximal 3-cliques (triads), and S5 acts faithfully on these also.</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Graph-theoretic properties of scales</title></head><body><!-- ws:start:WikiTextTocRule: | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Graph-theoretic properties of scales</title></head><body><!-- ws:start:WikiTextTocRule:20:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:20 --><!-- ws:start:WikiTextTocRule:21: --><a href="#Graph of a scale">Graph of a scale</a><!-- ws:end:WikiTextTocRule:21 --><!-- ws:start:WikiTextTocRule:22: --> | <a href="#Connectivity">Connectivity</a><!-- ws:end:WikiTextTocRule:22 --><!-- ws:start:WikiTextTocRule:23: --> | <a href="#The Characteristic Polynomial">The Characteristic Polynomial</a><!-- ws:end:WikiTextTocRule:23 --><!-- ws:start:WikiTextTocRule:24: --> | <a href="#The Laplace Spectrum">The Laplace Spectrum</a><!-- ws:end:WikiTextTocRule:24 --><!-- ws:start:WikiTextTocRule:25: --> | <a href="#The Genus">The Genus</a><!-- ws:end:WikiTextTocRule:25 --><!-- ws:start:WikiTextTocRule:26: --> | <a href="#The Automorphism Group">The Automorphism Group</a><!-- ws:end:WikiTextTocRule:26 --><!-- ws:start:WikiTextTocRule:27: --> | <a href="#Examples">Examples</a><!-- ws:end:WikiTextTocRule:27 --><!-- ws:start:WikiTextTocRule:28: --><!-- ws:end:WikiTextTocRule:28 --><!-- ws:start:WikiTextTocRule:29: --><!-- ws:end:WikiTextTocRule:29 --><!-- ws:start:WikiTextTocRule:30: --><!-- ws:end:WikiTextTocRule:30 --><!-- ws:start:WikiTextTocRule:31: --> | ||
<!-- ws:end:WikiTextTocRule: | <!-- ws:end:WikiTextTocRule:31 --><br /> | ||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Graph of a scale"></a><!-- ws:end:WikiTextHeadingRule:0 -->Graph of a scale</h1> | <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Graph of a scale"></a><!-- ws:end:WikiTextHeadingRule:0 -->Graph of a scale</h1> | ||
Given a <a class="wiki_link" href="/periodic%20scale">periodic scale</a>, meaning a scale whose steps repeat, and assuming some multiple of the period is an interval of equivalence (usually this means the octave, ie interval of 2, which from now on we will assume is the interval of equivalence) then we may reduce the scale to a finite set S of pitch classes. This relates to the usual way of defining a scale, as used for instance by <a class="wiki_link" href="/Scala">Scala</a>. If we say 1-9/8-5/4-4/3-3/2-5/3-15/8-2 is a scale, we mean that each step of it represents a class of octave-equivalent pitches, so that &quot;5/4&quot; represents {...5/8, 5/4, 5/2, 5, 10 ...} and both &quot;1&quot; and &quot;2&quot; mean {...1/4, 1/2, 1, 2, 4...}. Suppose we have a finite set of pitches C strictly within the octave, so that s∊C entails 1 &lt; s &lt; 2, and suppose if s∊C then also 2/s∊C. The elements of C represent consonant pitch classes exclusive of the unison-octave class.<br /> | Given a <a class="wiki_link" href="/periodic%20scale">periodic scale</a>, meaning a scale whose steps repeat, and assuming some multiple of the period is an interval of equivalence (usually this means the octave, ie interval of 2, which from now on we will assume is the interval of equivalence) then we may reduce the scale to a finite set S of pitch classes. This relates to the usual way of defining a scale, as used for instance by <a class="wiki_link" href="/Scala">Scala</a>. If we say 1-9/8-5/4-4/3-3/2-5/3-15/8-2 is a scale, we mean that each step of it represents a class of octave-equivalent pitches, so that &quot;5/4&quot; represents {...5/8, 5/4, 5/2, 5, 10 ...} and both &quot;1&quot; and &quot;2&quot; mean {...1/4, 1/2, 1, 2, 4...}. Suppose we have a finite set of pitches C strictly within the octave, so that s∊C entails 1 &lt; s &lt; 2, and suppose if s∊C then also 2/s∊C. The elements of C represent consonant pitch classes exclusive of the unison-octave class.<br /> | ||
Line 108: | Line 113: | ||
A <a class="wiki_link" href="/dyadic%20chord">dyadic chord</a> pentad is of genus 1, and any scale containing dyadic pentads is therefore not planar. The embedding of a pentad's graph on a torus is illustrated below:<br /> | A <a class="wiki_link" href="/dyadic%20chord">dyadic chord</a> pentad is of genus 1, and any scale containing dyadic pentads is therefore not planar. The embedding of a pentad's graph on a torus is illustrated below:<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:32:&lt;img src=&quot;/file/view/pentad.gif/358612239/pentad.gif&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/pentad.gif/358612239/pentad.gif" alt="pentad.gif" title="pentad.gif" /><!-- ws:end:WikiTextLocalImageRule:32 --><br /> | ||
<br /> | <br /> | ||
The edges leading from the four outer vertices wrap around to the opposite side, creating the torus embedding. On the other hand, a tetrad is of genus 0, since it can be drawn on a sphere as the verticies of a tetrahedron.<br /> | The edges leading from the four outer vertices wrap around to the opposite side, creating the torus embedding. On the other hand, a tetrad is of genus 0, since it can be drawn on a sphere as the verticies of a tetrahedron.<br /> | ||
Line 123: | Line 128: | ||
The Zarlino scale, or &quot;just diatonic&quot; as it's often called, is the scale 1-9/8-5/4-4/3-3/2-5/3-15/8-2, with three major and two minor triads. It has a characteristic polynomial x(x+1)(x^2-3)(x^3-x^2-7*x-3) = x^7 - 11x^5 - 10x^4 + 21x^3 + 30x^2 + 9x. From the coefficients of this we can read off that it has 11 dyads and 5 triads, and from the roots, we find that its automorphism group is an elementary 2-group--in fact, it is of order 2, with the nontrivial automorphism being inversion. The three connectivities, algebraic, vertex, and edge, are 0.914 ≤ 2 ≤ 2. The scales radius is 2 and its diameter is 3. Its genus, of course, is 0, but less obviously its maximal genus is 2.<br /> | The Zarlino scale, or &quot;just diatonic&quot; as it's often called, is the scale 1-9/8-5/4-4/3-3/2-5/3-15/8-2, with three major and two minor triads. It has a characteristic polynomial x(x+1)(x^2-3)(x^3-x^2-7*x-3) = x^7 - 11x^5 - 10x^4 + 21x^3 + 30x^2 + 9x. From the coefficients of this we can read off that it has 11 dyads and 5 triads, and from the roots, we find that its automorphism group is an elementary 2-group--in fact, it is of order 2, with the nontrivial automorphism being inversion. The three connectivities, algebraic, vertex, and edge, are 0.914 ≤ 2 ≤ 2. The scales radius is 2 and its diameter is 3. Its genus, of course, is 0, but less obviously its maximal genus is 2.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:33:&lt;img src=&quot;/file/view/zarlino.png/359381659/zarlino.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/zarlino.png/359381659/zarlino.png" alt="zarlino.png" title="zarlino.png" /><!-- ws:end:WikiTextLocalImageRule:33 --><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="Examples-The diatonic scale (Meantone[7])"></a><!-- ws:end:WikiTextHeadingRule:16 -->The diatonic scale (Meantone[7])</h2> | <!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="Examples-The diatonic scale (Meantone[7])"></a><!-- ws:end:WikiTextHeadingRule:16 -->The diatonic scale (Meantone[7])</h2> | ||
Line 130: | Line 135: | ||
The genus of the 7-limit diatonic scale is 1, with maximal genus of 4. The connectivities go 3.198 ≤ 4 ≤ 4, and the radius and diameter are both 2.<br /> | The genus of the 7-limit diatonic scale is 1, with maximal genus of 4. The connectivities go 3.198 ≤ 4 ≤ 4, and the radius and diameter are both 2.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule: | <!-- ws:start:WikiTextLocalImageRule:34:&lt;img src=&quot;/file/view/diatonic7.gif/359381571/diatonic7.gif&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/diatonic7.gif/359381571/diatonic7.gif" alt="diatonic7.gif" title="diatonic7.gif" /><!-- ws:end:WikiTextLocalImageRule:34 --><br /> | ||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:18:&lt;h2&gt; --><h2 id="toc9"><a name="Examples-The dekany"></a><!-- ws:end:WikiTextHeadingRule:18 -->The dekany</h2> | |||
The standard 2)5 dekany is a <a class="wiki_link" href="/Combination%20product%20sets">combination product set</a>, Cps([2,3,5,7,11], 2). It consists of ten notes associated to two-element subset of the set of the first five primes, {2,3,5,7,11}, and in one mode is 12/11-5/4-14/11-15/11-3/2-35/22-7/4-20/11-21/11, which we will take as its notes from note 0 to note 9. It has 30 edges, with connectivities 5 ≤ 6 ≤ 6, and the largest element of the Laplace spectrum is 8, so that the complementary graph is also connected. Its radius and diameter are both 2.<br /> | |||
<br /> | |||
The automorphism group is S5, the symmetric group of order 120 on a set of five points, which in this case are the five prime numbers to 11. Any permutation acts faithfully on the notes of the dekany, inducing the transitive permutation representation called 10T13 of S5 on ten points. The dekany has five maximal 4-cliques (tetrads) and ten maximal 3-cliques (triads), and S5 acts faithfully on these also.</body></html></pre></div> |