Graph-theoretic properties of scales: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 366763582 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 366767714 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-09-21 15:17:03 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-09-21 15:29:35 UTC</tt>.<br>
: The original revision id was <tt>366763582</tt>.<br>
: The original revision id was <tt>366767714</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 95: Line 95:
Maic[10], the 10-note MOS of [[Magic family#Magic-11-limit|magic temperament]], can in [[104edo|104et]] be expressed as the scale 0, 23, 28, 33, 38, 61, 66, 71, 94, 99, 104. If we use the 11-limit diamond, {13, 15, 15, 18, 20, 23, 28, 30, 33, 36, 38, 43, 48, 51, 53, 56, 61, 66, 68, 71, 74, 76, 81, 84, 86, 89, 89, 91}, for consonances we get a graph with ten verticies and 34 edges, with algebraic, vertex, and edge connectivity all 6. Its radius and diameter are both 2. It has 27 maximal cliques, 18 triads and 9 tetrads.
Maic[10], the 10-note MOS of [[Magic family#Magic-11-limit|magic temperament]], can in [[104edo|104et]] be expressed as the scale 0, 23, 28, 33, 38, 61, 66, 71, 94, 99, 104. If we use the 11-limit diamond, {13, 15, 15, 18, 20, 23, 28, 30, 33, 36, 38, 43, 48, 51, 53, 56, 61, 66, 68, 71, 74, 76, 81, 84, 86, 89, 89, 91}, for consonances we get a graph with ten verticies and 34 edges, with algebraic, vertex, and edge connectivity all 6. Its radius and diameter are both 2. It has 27 maximal cliques, 18 triads and 9 tetrads.


Abstractly, the rather large group of automorphisms of order 288 is the direct product of the Klein four-group and the transitive group 6T13 of degree 6, which is the wreath product S3 wr S2. The four-group part acts on the notes from 1 to 4, and is generated by the involutions (1,4) and (2,3), and the 6T13 group, of order 72, acts on notes 5 through 10--or 5 through 9 and 0, if you prefer. It is generated by (5,10)(6,8)(7,9) together with (5,6), (6,7) and (8,9).
Abstractly, the rather large group of automorphisms of order 288 is the direct product of the Klein four-group and the transitive group 6T13 of degree 6, which is the wreath product S3 S2. The four-group part acts on the notes from 1 to 4, and is generated by the involutions (1,4) and (2,3), and the 6T13 group, of order 72, acts on notes 5 through 10--or 5 through 9 and 0, if you prefer. It is generated by (5,10)(6,8)(7,9) together with (5,6), (6,7) and (8,9).


[[image:magic10.png]]
[[image:magic10.png]]
Line 245: Line 245:
  Maic[10], the 10-note MOS of &lt;a class="wiki_link" href="/Magic%20family#Magic-11-limit"&gt;magic temperament&lt;/a&gt;, can in &lt;a class="wiki_link" href="/104edo"&gt;104et&lt;/a&gt; be expressed as the scale 0, 23, 28, 33, 38, 61, 66, 71, 94, 99, 104. If we use the 11-limit diamond, {13, 15, 15, 18, 20, 23, 28, 30, 33, 36, 38, 43, 48, 51, 53, 56, 61, 66, 68, 71, 74, 76, 81, 84, 86, 89, 89, 91}, for consonances we get a graph with ten verticies and 34 edges, with algebraic, vertex, and edge connectivity all 6. Its radius and diameter are both 2. It has 27 maximal cliques, 18 triads and 9 tetrads.&lt;br /&gt;
  Maic[10], the 10-note MOS of &lt;a class="wiki_link" href="/Magic%20family#Magic-11-limit"&gt;magic temperament&lt;/a&gt;, can in &lt;a class="wiki_link" href="/104edo"&gt;104et&lt;/a&gt; be expressed as the scale 0, 23, 28, 33, 38, 61, 66, 71, 94, 99, 104. If we use the 11-limit diamond, {13, 15, 15, 18, 20, 23, 28, 30, 33, 36, 38, 43, 48, 51, 53, 56, 61, 66, 68, 71, 74, 76, 81, 84, 86, 89, 89, 91}, for consonances we get a graph with ten verticies and 34 edges, with algebraic, vertex, and edge connectivity all 6. Its radius and diameter are both 2. It has 27 maximal cliques, 18 triads and 9 tetrads.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Abstractly, the rather large group of automorphisms of order 288 is the direct product of the Klein four-group and the transitive group 6T13 of degree 6, which is the wreath product S3 wr S2. The four-group part acts on the notes from 1 to 4, and is generated by the involutions (1,4) and (2,3), and the 6T13 group, of order 72, acts on notes 5 through 10--or 5 through 9 and 0, if you prefer. It is generated by (5,10)(6,8)(7,9) together with (5,6), (6,7) and (8,9).&lt;br /&gt;
Abstractly, the rather large group of automorphisms of order 288 is the direct product of the Klein four-group and the transitive group 6T13 of degree 6, which is the wreath product S3 S2. The four-group part acts on the notes from 1 to 4, and is generated by the involutions (1,4) and (2,3), and the 6T13 group, of order 72, acts on notes 5 through 10--or 5 through 9 and 0, if you prefer. It is generated by (5,10)(6,8)(7,9) together with (5,6), (6,7) and (8,9).&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:65:&amp;lt;img src=&amp;quot;/file/view/magic10.png/360079055/magic10.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/magic10.png/360079055/magic10.png" alt="magic10.png" title="magic10.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:65 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:65:&amp;lt;img src=&amp;quot;/file/view/magic10.png/360079055/magic10.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/magic10.png/360079055/magic10.png" alt="magic10.png" title="magic10.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:65 --&gt;&lt;br /&gt;