Graph-theoretic properties of scales: Difference between revisions
Wikispaces>genewardsmith **Imported revision 366763582 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 366767714 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-09-21 15: | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-09-21 15:29:35 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>366767714</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 95: | Line 95: | ||
Maic[10], the 10-note MOS of [[Magic family#Magic-11-limit|magic temperament]], can in [[104edo|104et]] be expressed as the scale 0, 23, 28, 33, 38, 61, 66, 71, 94, 99, 104. If we use the 11-limit diamond, {13, 15, 15, 18, 20, 23, 28, 30, 33, 36, 38, 43, 48, 51, 53, 56, 61, 66, 68, 71, 74, 76, 81, 84, 86, 89, 89, 91}, for consonances we get a graph with ten verticies and 34 edges, with algebraic, vertex, and edge connectivity all 6. Its radius and diameter are both 2. It has 27 maximal cliques, 18 triads and 9 tetrads. | Maic[10], the 10-note MOS of [[Magic family#Magic-11-limit|magic temperament]], can in [[104edo|104et]] be expressed as the scale 0, 23, 28, 33, 38, 61, 66, 71, 94, 99, 104. If we use the 11-limit diamond, {13, 15, 15, 18, 20, 23, 28, 30, 33, 36, 38, 43, 48, 51, 53, 56, 61, 66, 68, 71, 74, 76, 81, 84, 86, 89, 89, 91}, for consonances we get a graph with ten verticies and 34 edges, with algebraic, vertex, and edge connectivity all 6. Its radius and diameter are both 2. It has 27 maximal cliques, 18 triads and 9 tetrads. | ||
Abstractly, the rather large group of automorphisms of order 288 is the direct product of the Klein four-group and the transitive group 6T13 of degree 6, which is the wreath product S3 | Abstractly, the rather large group of automorphisms of order 288 is the direct product of the Klein four-group and the transitive group 6T13 of degree 6, which is the wreath product S3 ≀ S2. The four-group part acts on the notes from 1 to 4, and is generated by the involutions (1,4) and (2,3), and the 6T13 group, of order 72, acts on notes 5 through 10--or 5 through 9 and 0, if you prefer. It is generated by (5,10)(6,8)(7,9) together with (5,6), (6,7) and (8,9). | ||
[[image:magic10.png]] | [[image:magic10.png]] | ||
Line 245: | Line 245: | ||
Maic[10], the 10-note MOS of <a class="wiki_link" href="/Magic%20family#Magic-11-limit">magic temperament</a>, can in <a class="wiki_link" href="/104edo">104et</a> be expressed as the scale 0, 23, 28, 33, 38, 61, 66, 71, 94, 99, 104. If we use the 11-limit diamond, {13, 15, 15, 18, 20, 23, 28, 30, 33, 36, 38, 43, 48, 51, 53, 56, 61, 66, 68, 71, 74, 76, 81, 84, 86, 89, 89, 91}, for consonances we get a graph with ten verticies and 34 edges, with algebraic, vertex, and edge connectivity all 6. Its radius and diameter are both 2. It has 27 maximal cliques, 18 triads and 9 tetrads.<br /> | Maic[10], the 10-note MOS of <a class="wiki_link" href="/Magic%20family#Magic-11-limit">magic temperament</a>, can in <a class="wiki_link" href="/104edo">104et</a> be expressed as the scale 0, 23, 28, 33, 38, 61, 66, 71, 94, 99, 104. If we use the 11-limit diamond, {13, 15, 15, 18, 20, 23, 28, 30, 33, 36, 38, 43, 48, 51, 53, 56, 61, 66, 68, 71, 74, 76, 81, 84, 86, 89, 89, 91}, for consonances we get a graph with ten verticies and 34 edges, with algebraic, vertex, and edge connectivity all 6. Its radius and diameter are both 2. It has 27 maximal cliques, 18 triads and 9 tetrads.<br /> | ||
<br /> | <br /> | ||
Abstractly, the rather large group of automorphisms of order 288 is the direct product of the Klein four-group and the transitive group 6T13 of degree 6, which is the wreath product S3 | Abstractly, the rather large group of automorphisms of order 288 is the direct product of the Klein four-group and the transitive group 6T13 of degree 6, which is the wreath product S3 ≀ S2. The four-group part acts on the notes from 1 to 4, and is generated by the involutions (1,4) and (2,3), and the 6T13 group, of order 72, acts on notes 5 through 10--or 5 through 9 and 0, if you prefer. It is generated by (5,10)(6,8)(7,9) together with (5,6), (6,7) and (8,9).<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextLocalImageRule:65:&lt;img src=&quot;/file/view/magic10.png/360079055/magic10.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/magic10.png/360079055/magic10.png" alt="magic10.png" title="magic10.png" /><!-- ws:end:WikiTextLocalImageRule:65 --><br /> | <!-- ws:start:WikiTextLocalImageRule:65:&lt;img src=&quot;/file/view/magic10.png/360079055/magic10.png&quot; alt=&quot;&quot; title=&quot;&quot; /&gt; --><img src="/file/view/magic10.png/360079055/magic10.png" alt="magic10.png" title="magic10.png" /><!-- ws:end:WikiTextLocalImageRule:65 --><br /> |