Graph-theoretic properties of scales: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 402060788 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 402063584 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-01-28 12:25:04 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-01-28 12:32:44 UTC</tt>.<br>
: The original revision id was <tt>402060788</tt>.<br>
: The original revision id was <tt>402063584</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 118: Line 118:


[[image:orwell9.png]]
[[image:orwell9.png]]
[[http://micro.soonlabel.com/gene_ward_smith/Others/Grood/Mountain_Village_TarkanGrood.mp3|Mountain Viliage]] by [[Tarkan Grood]]
[[http://micro.soonlabel.com/gene_ward_smith/transformers/swing-orwell9.mp3|Swing in Orwell-9]]


=Ten note scales=  
=Ten note scales=  
Line 166: Line 169:
Orwell[13], the 13-note MOS of orwell, has four more notes but the same set of 11-limit consonances as Orwell[9]. Now we have 0, 5, 7, 12, 17, 19, 24, 29, 34, 36, 41, 46, 48, 53, and while the graph of the scale still has a lot of symmetry, it is of an entirely different kind. This time the symmetry group is analogous to that of the diatonic scale, being the dihedral group D26 on 13 points; as with the 7-limit diatonic scale, the symmetries of Orwell[13] appear as inversion and the ability to transpose to any key while retaining the dyadic character of all dyadic chords, which however are much more numerous in kind and number. In particular, Orwell[13] has 26 maximal pentads and 13 maximal hexads on which the automorphism group faithfully acts.
Orwell[13], the 13-note MOS of orwell, has four more notes but the same set of 11-limit consonances as Orwell[9]. Now we have 0, 5, 7, 12, 17, 19, 24, 29, 34, 36, 41, 46, 48, 53, and while the graph of the scale still has a lot of symmetry, it is of an entirely different kind. This time the symmetry group is analogous to that of the diatonic scale, being the dihedral group D26 on 13 points; as with the 7-limit diatonic scale, the symmetries of Orwell[13] appear as inversion and the ability to transpose to any key while retaining the dyadic character of all dyadic chords, which however are much more numerous in kind and number. In particular, Orwell[13] has 26 maximal pentads and 13 maximal hexads on which the automorphism group faithfully acts.


The graph of Orwell[13] is 10-regular, has 65 edges, with connectivities 9.058 ≤ 10 ≤ 10, and radius and diameter both 2.</pre></div>
The graph of Orwell[13] is 10-regular, has 65 edges, with connectivities 9.058 ≤ 10 ≤ 10, and radius and diameter both 2.
 
[[http://archive.org/download/TunicataAndFugue/TunicataAndFugueVer2.mp3|Tunicata and Fugue]] by [[Peter Kosmorsky]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Graph-theoretic properties of scales&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:56:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:56 --&gt;&lt;!-- ws:start:WikiTextTocRule:57: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Graph of a scale"&gt;Graph of a scale&lt;/a&gt;&lt;/div&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Graph-theoretic properties of scales&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:56:&amp;lt;img id=&amp;quot;wikitext@@toc@@normal&amp;quot; class=&amp;quot;WikiMedia WikiMediaToc&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/normal?w=225&amp;amp;h=100&amp;quot;/&amp;gt; --&gt;&lt;div id="toc"&gt;&lt;h1 class="nopad"&gt;Table of Contents&lt;/h1&gt;&lt;!-- ws:end:WikiTextTocRule:56 --&gt;&lt;!-- ws:start:WikiTextTocRule:57: --&gt;&lt;div style="margin-left: 1em;"&gt;&lt;a href="#Graph of a scale"&gt;Graph of a scale&lt;/a&gt;&lt;/div&gt;
Line 308: Line 313:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:91:&amp;lt;img src=&amp;quot;/file/view/orwell9.png/359811159/orwell9.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/orwell9.png/359811159/orwell9.png" alt="orwell9.png" title="orwell9.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:91 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextLocalImageRule:91:&amp;lt;img src=&amp;quot;/file/view/orwell9.png/359811159/orwell9.png&amp;quot; alt=&amp;quot;&amp;quot; title=&amp;quot;&amp;quot; /&amp;gt; --&gt;&lt;img src="/file/view/orwell9.png/359811159/orwell9.png" alt="orwell9.png" title="orwell9.png" /&gt;&lt;!-- ws:end:WikiTextLocalImageRule:91 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Grood/Mountain_Village_TarkanGrood.mp3" rel="nofollow"&gt;Mountain Viliage&lt;/a&gt; by &lt;a class="wiki_link" href="/Tarkan%20Grood"&gt;Tarkan Grood&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/transformers/swing-orwell9.mp3" rel="nofollow"&gt;Swing in Orwell-9&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:34:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc17"&gt;&lt;a name="Ten note scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:34 --&gt;Ten note scales&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:34:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc17"&gt;&lt;a name="Ten note scales"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:34 --&gt;Ten note scales&lt;/h1&gt;
Line 356: Line 364:
  Orwell[13], the 13-note MOS of orwell, has four more notes but the same set of 11-limit consonances as Orwell[9]. Now we have 0, 5, 7, 12, 17, 19, 24, 29, 34, 36, 41, 46, 48, 53, and while the graph of the scale still has a lot of symmetry, it is of an entirely different kind. This time the symmetry group is analogous to that of the diatonic scale, being the dihedral group D26 on 13 points; as with the 7-limit diatonic scale, the symmetries of Orwell[13] appear as inversion and the ability to transpose to any key while retaining the dyadic character of all dyadic chords, which however are much more numerous in kind and number. In particular, Orwell[13] has 26 maximal pentads and 13 maximal hexads on which the automorphism group faithfully acts.&lt;br /&gt;
  Orwell[13], the 13-note MOS of orwell, has four more notes but the same set of 11-limit consonances as Orwell[9]. Now we have 0, 5, 7, 12, 17, 19, 24, 29, 34, 36, 41, 46, 48, 53, and while the graph of the scale still has a lot of symmetry, it is of an entirely different kind. This time the symmetry group is analogous to that of the diatonic scale, being the dihedral group D26 on 13 points; as with the 7-limit diatonic scale, the symmetries of Orwell[13] appear as inversion and the ability to transpose to any key while retaining the dyadic character of all dyadic chords, which however are much more numerous in kind and number. In particular, Orwell[13] has 26 maximal pentads and 13 maximal hexads on which the automorphism group faithfully acts.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The graph of Orwell[13] is 10-regular, has 65 edges, with connectivities 9.058 ≤ 10 ≤ 10, and radius and diameter both 2.&lt;/body&gt;&lt;/html&gt;</pre></div>
The graph of Orwell[13] is 10-regular, has 65 edges, with connectivities 9.058 ≤ 10 ≤ 10, and radius and diameter both 2.&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://archive.org/download/TunicataAndFugue/TunicataAndFugueVer2.mp3" rel="nofollow"&gt;Tunicata and Fugue&lt;/a&gt; by &lt;a class="wiki_link" href="/Peter%20Kosmorsky"&gt;Peter Kosmorsky&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>