Graph-theoretic properties of scales: Difference between revisions
Wikispaces>genewardsmith **Imported revision 407730672 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 445198348 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013- | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-08-17 00:38:21 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>445198348</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 62: | Line 62: | ||
==The diatonic scale (Meantone[7])== | ==The diatonic scale (Meantone[7])== | ||
The diatonic scale in 31edo consists of the notes 0, 5, 10, 13, 18, 23, 28, 31. In the 7-limit, it has the consonance set {6, 7, 8, 10, 13, 15, 16, 18, 21, 23, 24, 25}, leading to a graph with the high degree of symmetry afforded by the dihedral group of order 14. This graph is in fact isomorphic to the graph of | The diatonic scale in 31edo consists of the notes 0, 5, 10, 13, 18, 23, 28, 31. In the 7-limit, it has the consonance set {6, 7, 8, 10, 13, 15, 16, 18, 21, 23, 24, 25}, leading to a graph with the high degree of symmetry afforded by the dihedral group of order 14. This graph is in fact isomorphic to the graph of 5-limit 7edo. The maximal cliques of the graph are the seven dyadic chord triads, one on each degree of the scale; three major, three minor, and one diminished. Because of the graph symmetry, the 7-limit diatonic scale can transpose to any key, mapping all dyadic triads to other dyadic triads. | ||
The genus of the 7-limit diatonic scale is 1, with maximal genus of 4. The connectivities go 3.198 ≤ 4 ≤ 4, and the radius and diameter are both 2. | The genus of the 7-limit diatonic scale is 1, with maximal genus of 4. The connectivities go 3.198 ≤ 4 ≤ 4, and the radius and diameter are both 2. | ||
Line 280: | Line 280: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="Seven note scales-The diatonic scale (Meantone[7])"></a><!-- ws:end:WikiTextHeadingRule:16 -->The diatonic scale (Meantone[7])</h2> | <!-- ws:start:WikiTextHeadingRule:16:&lt;h2&gt; --><h2 id="toc8"><a name="Seven note scales-The diatonic scale (Meantone[7])"></a><!-- ws:end:WikiTextHeadingRule:16 -->The diatonic scale (Meantone[7])</h2> | ||
The diatonic scale in 31edo consists of the notes 0, 5, 10, 13, 18, 23, 28, 31. In the 7-limit, it has the consonance set {6, 7, 8, 10, 13, 15, 16, 18, 21, 23, 24, 25}, leading to a graph with the high degree of symmetry afforded by the dihedral group of order 14. This graph is in fact isomorphic to the graph of | The diatonic scale in 31edo consists of the notes 0, 5, 10, 13, 18, 23, 28, 31. In the 7-limit, it has the consonance set {6, 7, 8, 10, 13, 15, 16, 18, 21, 23, 24, 25}, leading to a graph with the high degree of symmetry afforded by the dihedral group of order 14. This graph is in fact isomorphic to the graph of 5-limit 7edo. The maximal cliques of the graph are the seven dyadic chord triads, one on each degree of the scale; three major, three minor, and one diminished. Because of the graph symmetry, the 7-limit diatonic scale can transpose to any key, mapping all dyadic triads to other dyadic triads.<br /> | ||
<br /> | <br /> | ||
The genus of the 7-limit diatonic scale is 1, with maximal genus of 4. The connectivities go 3.198 ≤ 4 ≤ 4, and the radius and diameter are both 2.<br /> | The genus of the 7-limit diatonic scale is 1, with maximal genus of 4. The connectivities go 3.198 ≤ 4 ≤ 4, and the radius and diameter are both 2.<br /> |