Golden meantone: Difference between revisions

Wikispaces>xenwolf
**Imported revision 468693454 - Original comment: **
 
Wikispaces>genewardsmith
**Imported revision 468774218 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2013-11-13 10:11:14 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-11-13 13:39:11 UTC</tt>.<br>
: The original revision id was <tt>468693454</tt>.<br>
: The original revision id was <tt>468774218</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**Golden Meantone** is based on the paradigm that the relation between whole and half tone intervals should be the [[http://en.wikipedia.org/wiki/Golden_ratio|Golden Ratio]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**Golden Meantone** is based on making the relation between whole tone and diatonic semitone intervals be the [[http://en.wikipedia.org/wiki/Golden_ratio|Golden Ratio]]


[[math]]
[[math]]
Line 12: Line 12:
[[math]]
[[math]]


Thus some edo systems - the 12-step too - could be considered as approximations to this ideal.
This makes the Golden fifth exactly
 
[[math]]
(8 - \varphi) / 11
[[math]]
 
octave, or
 
[[math]]
(9600 - 1200 \varphi) / 11
[[math]]
 
cents.
 
Edo systems in a Fibonacci style recurrence beginning with 7 and 12 are successively better approximations to this ideal.


== Construction ==
== Construction ==
Line 32: Line 46:
[[http://www.io.com/~hmiller/midi/canon-golden.mid|An acoustic experience]] - Kornerup himself had no chance to have it - is contained in the [[Warped canon]] collection.</pre></div>
[[http://www.io.com/~hmiller/midi/canon-golden.mid|An acoustic experience]] - Kornerup himself had no chance to have it - is contained in the [[Warped canon]] collection.</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Golden Meantone&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;Golden Meantone&lt;/strong&gt; is based on the paradigm that the relation between whole and half tone intervals should be the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Golden_ratio" rel="nofollow"&gt;Golden Ratio&lt;/a&gt;&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Golden Meantone&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;Golden Meantone&lt;/strong&gt; is based on making the relation between whole tone and diatonic semitone intervals be the &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Golden_ratio" rel="nofollow"&gt;Golden Ratio&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:0:
&lt;!-- ws:start:WikiTextMathRule:0:
Line 39: Line 53:
  --&gt;&lt;script type="math/tex"&gt;\varphi = \frac 1 2 (\sqrt{5}+1) \approx 1.61803\,39887\ldots\,&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\varphi = \frac 1 2 (\sqrt{5}+1) \approx 1.61803\,39887\ldots\,&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Thus some edo systems - the 12-step too - could be considered as approximations to this ideal.&lt;br /&gt;
This makes the Golden fifth exactly&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:1:
[[math]]&amp;lt;br/&amp;gt;
(8 - \varphi) / 11&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;(8 - \varphi) / 11&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:1 --&gt;&lt;br /&gt;
&lt;br /&gt;
octave, or&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextMathRule:2:
[[math]]&amp;lt;br/&amp;gt;
(9600 - 1200 \varphi) / 11&amp;lt;br/&amp;gt;[[math]]
--&gt;&lt;script type="math/tex"&gt;(9600 - 1200 \varphi) / 11&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:2 --&gt;&lt;br /&gt;
&lt;br /&gt;
cents.&lt;br /&gt;
&lt;br /&gt;
Edo systems in a Fibonacci style recurrence beginning with 7 and 12 are successively better approximations to this ideal.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:1:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Construction"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:1 --&gt; Construction &lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:3:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc0"&gt;&lt;a name="x-Construction"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:3 --&gt; Construction &lt;/h2&gt;
If you use two neighboring numbers from Fibonacci Series 1 1 2 3 5 8 13 21... you get the following approximations:&lt;br /&gt;
If you use two neighboring numbers from Fibonacci Series 1 1 2 3 5 8 13 21... you get the following approximations:&lt;br /&gt;
  1, 1 -&amp;gt; &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;&lt;br /&gt;
  1, 1 -&amp;gt; &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt;&lt;br /&gt;
Line 51: Line 81:
13, 21 -&amp;gt; &lt;a class="wiki_link" href="/131edo"&gt;131edo&lt;/a&gt;&lt;br /&gt;
13, 21 -&amp;gt; &lt;a class="wiki_link" href="/131edo"&gt;131edo&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:3:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x-Evaluation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:3 --&gt; Evaluation &lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc1"&gt;&lt;a name="x-Evaluation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt; Evaluation &lt;/h2&gt;
&lt;br /&gt;
&lt;br /&gt;
Graham Breed &lt;a class="wiki_link_ext" href="http://x31eq.com/meantone.htm" rel="nofollow"&gt;writes&lt;/a&gt;: &lt;em&gt;I think of this as the standard melodic meantone because the all these ratios are the same. It has the mellow sound of 1/4 comma, but does still have a character of its own. Some algorithms make this almost exactly the optimum 5-limit tuning. It's fairly good as a 7-limit tuning as well. Almost the optimum (according to me) for diminished sevenths. I toyed with this as a guitar tuning, but rejected it because 4:6:9 chords aren't quite good enough. That is, the poor fifth leads to a sludgy major ninth.&lt;/em&gt;&lt;br /&gt;
Graham Breed &lt;a class="wiki_link_ext" href="http://x31eq.com/meantone.htm" rel="nofollow"&gt;writes&lt;/a&gt;: &lt;em&gt;I think of this as the standard melodic meantone because the all these ratios are the same. It has the mellow sound of 1/4 comma, but does still have a character of its own. Some algorithms make this almost exactly the optimum 5-limit tuning. It's fairly good as a 7-limit tuning as well. Almost the optimum (according to me) for diminished sevenths. I toyed with this as a guitar tuning, but rejected it because 4:6:9 chords aren't quite good enough. That is, the poor fifth leads to a sludgy major ninth.&lt;/em&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:5:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x-Listening"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:5 --&gt; Listening &lt;/h2&gt;
&lt;!-- ws:start:WikiTextHeadingRule:7:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="x-Listening"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:7 --&gt; Listening &lt;/h2&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;a class="wiki_link_ext" href="http://www.io.com/~hmiller/midi/canon-golden.mid" rel="nofollow"&gt;An acoustic experience&lt;/a&gt; - Kornerup himself had no chance to have it - is contained in the &lt;a class="wiki_link" href="/Warped%20canon"&gt;Warped canon&lt;/a&gt; collection.&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;a class="wiki_link_ext" href="http://www.io.com/~hmiller/midi/canon-golden.mid" rel="nofollow"&gt;An acoustic experience&lt;/a&gt; - Kornerup himself had no chance to have it - is contained in the &lt;a class="wiki_link" href="/Warped%20canon"&gt;Warped canon&lt;/a&gt; collection.&lt;/body&gt;&lt;/html&gt;</pre></div>