Template:LaTeX mapping operators/doc: Difference between revisions

ArrowHead294 (talk | contribs)
m De-escape
ArrowHead294 (talk | contribs)
Line 96: Line 96:
|-
|-
| <code>rbra</code>
| <code>rbra</code>
| <code>{{nowrap|<nowiki>\rbra{\monzo{1 & 2 & 3}}</nowiki>}} & {{nowrap|<nowiki>\monzo{0 & -3 & -5}}</nowiki>}}</code>
| <code>{{nowrap|<nowiki>\rbra{\monzo{1 & 2 & 3}</nowiki>}} & {{nowrap|<nowiki>\monzo{0 & -3 & -5}}</nowiki>}}</code>
| <math>\rbra{\monzo{1 & 2 & 3} & \monzo{0 & -3 & -5}}</math>
| <math>\rbra{\monzo{1 & 2 & 3} & \monzo{0 & -3 & -5}}</math>
| rowspan="2" | [[Dave Keenan]] and [[Douglas Blumeyer]]'s<br />[[Extended bra-ket notation #Variant including curly and square brackets|variation]] on [[extended bra-ket notation]]
| rowspan="2" | [[Dave Keenan]] and [[Douglas Blumeyer]]'s<br />[[Extended bra-ket notation #Variant including curly and square brackets|variation]] on [[extended bra-ket notation]]
|-
|-
| <code>rket</code>
| <code>rket</code>
| <code>{{nowrap|<nowiki>\rket{\val{1 & 2 & 3}}</nowiki>}} & {{nowrap|<nowiki>\val{0 & -3 & -5}</nowiki>}}}</code>
| <code>{{nowrap|<nowiki>\rket{\val{1 & 2 & 3}</nowiki>}} & {{nowrap|<nowiki>\val{0 & -3 & -5}}</nowiki>}}}</code>
| <math>\rket{\val{1 & 2 & 3} & \val{0 & -3 & -5}}</math>
| <math>\rket{\val{1 & 2 & 3} & \val{0 & -3 & -5}}</math>
|-
|-
| <code>vmp</code>
| <code>vmp</code>
| <code>{{nowrap|<nowiki>\vmp{12 & 19 & 28}</nowiki>}} & {{nowrap|<nowiki>{-4 & 4 & -1}}</nowiki>}}</code>
| <code>{{nowrap|<nowiki>\vmp{12 & 19 & 28}</nowiki>}}{{nowrap|<nowiki>{-4 & 4 & -1}</nowiki>}}</code>
| <math>\vmp{12 & 19 & 28}{-4 & 4 & -1}</math>
| <math>\vmp{12 & 19 & 28}{-4 & 4 & -1}</math>
| Dot product of val and monzo
| Dot product of val and monzo
|-
|-
| <code>wmp</code>
| <code>wmp</code>
| <code>{{nowrap|<nowiki>\wmp{12 & 19 & 28}</nowiki>}} & {{nowrap|<nowiki>{-4 & 4 & -1}}</nowiki>}}</code>
| <code>{{nowrap|<nowiki>\wmp{12 & 19 & 28}</nowiki>}}{{nowrap|<nowiki>{-4 & 4 & -1}</nowiki>}}</code>
| <math>\wmp{12 & 19 & 28}{-4 & 4 & -1}</math>
| <math>\wmp{12 & 19 & 28}{-4 & 4 & -1}</math>
| Dot product of bival and bimonzo
| Dot product of bival and bimonzo