Generalized Tenney norms and Tp interval space: Difference between revisions

Wikispaces>mbattaglia1
**Imported revision 356539736 - Original comment: **
Wikispaces>mbattaglia1
**Imported revision 356539790 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 12:32:03 UTC</tt>.<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 12:32:37 UTC</tt>.<br>
: The original revision id was <tt>356539736</tt>.<br>
: The original revision id was <tt>356539790</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 29: Line 29:
[[math]]
[[math]]


where **V&lt;span style="font-size: 80%; vertical-align: sub;"&gt;G&lt;/span&gt;** is a [[xenharmonic/Subgroup Mapping Matrices (V-maps)|V-map]] in which the nth column is a monzo expressing the nth basis element of **G** in a suitable full-limit **L** containing all of G as a subgroup, **W&lt;span style="font-size: 80%; vertical-align: sub;"&gt;L&lt;/span&gt;** is a diagonal weighting matrix in which the nth entry in the diagonal is the log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt; of the nth prime in **L**, and the || · ||**&lt;span style="font-size: 80%; vertical-align: sub;"&gt;1&lt;/span&gt;** on the right hand side of the equation is the L1 norm on the resulting full-limit real vector.
where **V&lt;span style="font-size: 80%; vertical-align: sub;"&gt;G&lt;/span&gt;** is a [[xenharmonic/Subgroup Mapping Matrices (V-maps)|V-map]] in which the nth column is a monzo expressing the nth basis element of **G** in a suitable full-limit **L** containing all of **G** as a subgroup, **W&lt;span style="font-size: 80%; vertical-align: sub;"&gt;L&lt;/span&gt;** is a diagonal weighting matrix in which the nth entry in the diagonal is the log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt; of the nth prime in **L**, and the || · ||**&lt;span style="font-size: 80%; vertical-align: sub;"&gt;1&lt;/span&gt;** on the right hand side of the equation is the L1 norm on the resulting full-limit real vector.


It is notable that, for interval spaces corresponding to a group of monzos where the basis is set to consist of only primes or prime powers, the Tenney norm of any interval //v// can be represented by the simpler expression
It is notable that, for interval spaces corresponding to a group of monzos where the basis is set to consist of only primes or prime powers, the Tenney norm of any interval //v// can be represented by the simpler expression
Line 125: Line 125:
  --&gt;&lt;script type="math/tex"&gt;\left \| \vec{v} \right \|_{\textbf{T1}}^\textbf{G} = \left \| \mathbf{W_L} \cdot \mathbf{V_\textbf{G}} \cdot \vec{v} \right \|_\textbf{1}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
  --&gt;&lt;script type="math/tex"&gt;\left \| \vec{v} \right \|_{\textbf{T1}}^\textbf{G} = \left \| \mathbf{W_L} \cdot \mathbf{V_\textbf{G}} \cdot \vec{v} \right \|_\textbf{1}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:0 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
where &lt;strong&gt;V&lt;span style="font-size: 80%; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt; is a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Subgroup%20Mapping%20Matrices%20%28V-maps%29"&gt;V-map&lt;/a&gt; in which the nth column is a monzo expressing the nth basis element of &lt;strong&gt;G&lt;/strong&gt; in a suitable full-limit &lt;strong&gt;L&lt;/strong&gt; containing all of G as a subgroup, &lt;strong&gt;W&lt;span style="font-size: 80%; vertical-align: sub;"&gt;L&lt;/span&gt;&lt;/strong&gt; is a diagonal weighting matrix in which the nth entry in the diagonal is the log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt; of the nth prime in &lt;strong&gt;L&lt;/strong&gt;, and the || · ||&lt;strong&gt;&lt;span style="font-size: 80%; vertical-align: sub;"&gt;1&lt;/span&gt;&lt;/strong&gt; on the right hand side of the equation is the L1 norm on the resulting full-limit real vector.&lt;br /&gt;
where &lt;strong&gt;V&lt;span style="font-size: 80%; vertical-align: sub;"&gt;G&lt;/span&gt;&lt;/strong&gt; is a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Subgroup%20Mapping%20Matrices%20%28V-maps%29"&gt;V-map&lt;/a&gt; in which the nth column is a monzo expressing the nth basis element of &lt;strong&gt;G&lt;/strong&gt; in a suitable full-limit &lt;strong&gt;L&lt;/strong&gt; containing all of &lt;strong&gt;G&lt;/strong&gt; as a subgroup, &lt;strong&gt;W&lt;span style="font-size: 80%; vertical-align: sub;"&gt;L&lt;/span&gt;&lt;/strong&gt; is a diagonal weighting matrix in which the nth entry in the diagonal is the log&lt;span style="font-size: 10px; vertical-align: sub;"&gt;2&lt;/span&gt; of the nth prime in &lt;strong&gt;L&lt;/strong&gt;, and the || · ||&lt;strong&gt;&lt;span style="font-size: 80%; vertical-align: sub;"&gt;1&lt;/span&gt;&lt;/strong&gt; on the right hand side of the equation is the L1 norm on the resulting full-limit real vector.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
It is notable that, for interval spaces corresponding to a group of monzos where the basis is set to consist of only primes or prime powers, the Tenney norm of any interval &lt;em&gt;v&lt;/em&gt; can be represented by the simpler expression&lt;br /&gt;
It is notable that, for interval spaces corresponding to a group of monzos where the basis is set to consist of only primes or prime powers, the Tenney norm of any interval &lt;em&gt;v&lt;/em&gt; can be represented by the simpler expression&lt;br /&gt;