Generalized Tenney norms and Tp interval space: Difference between revisions

Wikispaces>mbattaglia1
**Imported revision 356542386 - Original comment: **
Wikispaces>mbattaglia1
**Imported revision 356543432 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 12:51:59 UTC</tt>.<br>
: This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-06 13:01:01 UTC</tt>.<br>
: The original revision id was <tt>356542386</tt>.<br>
: The original revision id was <tt>356543432</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 97: Line 97:


[[math]]
[[math]]
\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.\nicefrac{9}{7}.\nicefrac{5}{3}}
\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.\frac{9}{7}.\frac{5}{3}} = \left \|
\begin{bmatrix}
\begin{bmatrix}
\log_2(2) &amp; 0 &amp; 0 &amp; 0\\
\log_2(2) &amp; 0 &amp; 0 &amp; 0\\
Line 103: Line 103:
0 &amp; 0 &amp; \log_2(5) &amp; 0\\
0 &amp; 0 &amp; \log_2(5) &amp; 0\\
0 &amp; 0 &amp; 0 &amp; \log_2(7)
0 &amp; 0 &amp; 0 &amp; \log_2(7)
\end{bmatrix}
\end{bmatrix} \cdot \left[ \begin{array}{rrrrrl}
| &amp; 1 &amp; 0 &amp; 0 &amp; 0 &amp; \rangle\\
| &amp; 0 &amp; 2 &amp; 0 &amp; -1 &amp; \rangle\\
| &amp; 0 &amp; -1 &amp; 1 &amp; 0 &amp; \rangle
\end{array} \right] \cdot \left[ \begin{array}{rrrrl}
| &amp; 0 &amp; -2 &amp; 1 &amp; \rangle
\end{array} \right]
\right \|_\mathbf{1}
\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.\frac{9}{7}.\frac{5}{3}} = \left \| |0 \;\text{-}7.925 \;\; 2.322 \;\; 5.615 \rangle \right \|_\mathbf{1} = |0| + |-7.925| + |2.322| + |5.615| = 15.861
[[math]]
[[math]]
real vector works out to |0 -7.925 2.322 5.615&gt;, and its L1 norm is |0| + |-7.925| + |2.322| + |5.615| = 15.861. This is the T1 norm of |0 -2 1&gt; on the 2.5/3.9/7 group.


To confirm this, we can put smonzo |0 -2 1&gt; back into rational form to see that it represents the interval 245/243. As the L1 norm is supposed to give log(n·d) for any interval n/d, we can confirm that we have the right answer above by noting that log(245·243) is indeed equal to 15.861.</pre></div>
To confirm this, we can put smonzo |0 -2 1&gt; back into rational form to see that it represents the interval 245/243. As the L1 norm is supposed to give log(n·d) for any interval n/d, we can confirm that we have the right answer above by noting that log(245·243) is indeed equal to 15.861.</pre></div>
Line 221: Line 227:
&lt;!-- ws:start:WikiTextMathRule:7:
&lt;!-- ws:start:WikiTextMathRule:7:
[[math]]&amp;lt;br/&amp;gt;
[[math]]&amp;lt;br/&amp;gt;
\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.\nicefrac{9}{7}.\nicefrac{5}{3}}&amp;lt;br /&amp;gt;
\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.\frac{9}{7}.\frac{5}{3}} = \left \|&amp;lt;br /&amp;gt;
\begin{bmatrix}&amp;lt;br /&amp;gt;
\begin{bmatrix}&amp;lt;br /&amp;gt;
\log_2(2) &amp;amp; 0 &amp;amp; 0 &amp;amp; 0\\&amp;lt;br /&amp;gt;
\log_2(2) &amp;amp; 0 &amp;amp; 0 &amp;amp; 0\\&amp;lt;br /&amp;gt;
Line 227: Line 233:
0 &amp;amp; 0 &amp;amp; \log_2(5) &amp;amp; 0\\&amp;lt;br /&amp;gt;
0 &amp;amp; 0 &amp;amp; \log_2(5) &amp;amp; 0\\&amp;lt;br /&amp;gt;
0 &amp;amp; 0 &amp;amp; 0 &amp;amp; \log_2(7)&amp;lt;br /&amp;gt;
0 &amp;amp; 0 &amp;amp; 0 &amp;amp; \log_2(7)&amp;lt;br /&amp;gt;
\end{bmatrix}&amp;lt;br/&amp;gt;[[math]]
\end{bmatrix} \cdot \left[ \begin{array}{rrrrrl}&amp;lt;br /&amp;gt;
  --&gt;&lt;script type="math/tex"&gt;\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.\nicefrac{9}{7}.\nicefrac{5}{3}}
| &amp;amp; 1 &amp;amp; 0 &amp;amp; 0 &amp;amp; 0 &amp;amp; \rangle\\&amp;lt;br /&amp;gt;
| &amp;amp; 0 &amp;amp; 2 &amp;amp; 0 &amp;amp; -1 &amp;amp; \rangle\\&amp;lt;br /&amp;gt;
| &amp;amp; 0 &amp;amp; -1 &amp;amp; 1 &amp;amp; 0 &amp;amp; \rangle&amp;lt;br /&amp;gt;
\end{array} \right] \cdot \left[ \begin{array}{rrrrl}&amp;lt;br /&amp;gt;
| &amp;amp; 0 &amp;amp; -2 &amp;amp; 1 &amp;amp; \rangle&amp;lt;br /&amp;gt;
\end{array} \right]&amp;lt;br /&amp;gt;
\right \|_\mathbf{1}&amp;lt;br /&amp;gt;
\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.\frac{9}{7}.\frac{5}{3}} = \left \| |0 \;\text{-}7.925 \;\; 2.322 \;\; 5.615 \rangle \right \|_\mathbf{1} = |0| + |-7.925| + |2.322| + |5.615| = 15.861&amp;lt;br/&amp;gt;[[math]]
  --&gt;&lt;script type="math/tex"&gt;\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.\frac{9}{7}.\frac{5}{3}} = \left \|
\begin{bmatrix}
\begin{bmatrix}
\log_2(2) &amp; 0 &amp; 0 &amp; 0\\
\log_2(2) &amp; 0 &amp; 0 &amp; 0\\
Line 234: Line 248:
0 &amp; 0 &amp; \log_2(5) &amp; 0\\
0 &amp; 0 &amp; \log_2(5) &amp; 0\\
0 &amp; 0 &amp; 0 &amp; \log_2(7)
0 &amp; 0 &amp; 0 &amp; \log_2(7)
\end{bmatrix}&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:7 --&gt;&lt;br /&gt;
\end{bmatrix} \cdot \left[ \begin{array}{rrrrrl}
&lt;br /&gt;
| &amp; 1 &amp; 0 &amp; 0 &amp; 0 &amp; \rangle\\
real vector works out to |0 -7.925 2.322 5.615&amp;gt;, and its L1 norm is |0| + |-7.925| + |2.322| + |5.615| = 15.861. This is the T1 norm of |0 -2 1&amp;gt; on the 2.5/3.9/7 group.&lt;br /&gt;
| &amp; 0 &amp; 2 &amp; 0 &amp; -1 &amp; \rangle\\
| &amp; 0 &amp; -1 &amp; 1 &amp; 0 &amp; \rangle
\end{array} \right] \cdot \left[ \begin{array}{rrrrl}
| &amp; 0 &amp; -2 &amp; 1 &amp; \rangle
\end{array} \right]
\right \|_\mathbf{1}
\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.\frac{9}{7}.\frac{5}{3}} = \left \| |0 \;\text{-}7.925 \;\; 2.322 \;\; 5.615 \rangle \right \|_\mathbf{1} = |0| + |-7.925| + |2.322| + |5.615| = 15.861&lt;/script&gt;&lt;!-- ws:end:WikiTextMathRule:7 --&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
To confirm this, we can put smonzo |0 -2 1&amp;gt; back into rational form to see that it represents the interval 245/243. As the L1 norm is supposed to give log(n·d) for any interval n/d, we can confirm that we have the right answer above by noting that log(245·243) is indeed equal to 15.861.&lt;/body&gt;&lt;/html&gt;</pre></div>
To confirm this, we can put smonzo |0 -2 1&amp;gt; back into rational form to see that it represents the interval 245/243. As the L1 norm is supposed to give log(n·d) for any interval n/d, we can confirm that we have the right answer above by noting that log(245·243) is indeed equal to 15.861.&lt;/body&gt;&lt;/html&gt;</pre></div>