Generalized Tenney norms and Tp interval space: Difference between revisions
Wikispaces>genewardsmith **Imported revision 356588326 - Original comment: ** |
Wikispaces>mbattaglia1 **Imported revision 356643826 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:mbattaglia1|mbattaglia1]] and made on <tt>2012-08-07 03:02:52 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>356643826</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 97: | Line 97: | ||
[[math]] | [[math]] | ||
\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2. | \left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.9/7.5/3} = \left \| | ||
\begin{bmatrix} | \begin{bmatrix} | ||
\log_2(2) & 0 & 0 & 0\\ | \log_2(2) & 0 & 0 & 0\\ | ||
Line 116: | Line 116: | ||
[[math]] | [[math]] | ||
\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2. | \left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.9/7.5/3} = \left \| |0 \;-7.925 \;\; 2.322 \;\; 5.615 \rangle \right \|_\mathbf{1} = 15.861 | ||
[[math]] | [[math]] | ||
Line 234: | Line 234: | ||
<!-- ws:start:WikiTextMathRule:7: | <!-- ws:start:WikiTextMathRule:7: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2. | \left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.9/7.5/3} = \left \|&lt;br /&gt; | ||
\begin{bmatrix}&lt;br /&gt; | \begin{bmatrix}&lt;br /&gt; | ||
\log_2(2) &amp; 0 &amp; 0 &amp; 0\\&lt;br /&gt; | \log_2(2) &amp; 0 &amp; 0 &amp; 0\\&lt;br /&gt; | ||
Line 248: | Line 248: | ||
\end{array} \right]&lt;br /&gt; | \end{array} \right]&lt;br /&gt; | ||
\right \|_\mathbf{1}&lt;br/&gt;[[math]] | \right \|_\mathbf{1}&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2. | --><script type="math/tex">\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.9/7.5/3} = \left \| | ||
\begin{bmatrix} | \begin{bmatrix} | ||
\log_2(2) & 0 & 0 & 0\\ | \log_2(2) & 0 & 0 & 0\\ | ||
Line 267: | Line 267: | ||
<!-- ws:start:WikiTextMathRule:8: | <!-- ws:start:WikiTextMathRule:8: | ||
[[math]]&lt;br/&gt; | [[math]]&lt;br/&gt; | ||
\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2. | \left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.9/7.5/3} = \left \| |0 \;-7.925 \;\; 2.322 \;\; 5.615 \rangle \right \|_\mathbf{1} = 15.861&lt;br/&gt;[[math]] | ||
--><script type="math/tex">\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2. | --><script type="math/tex">\left \| \vec{v} \right \|_\mathbf{T1}^\mathbf{2.9/7.5/3} = \left \| |0 \;-7.925 \;\; 2.322 \;\; 5.615 \rangle \right \|_\mathbf{1} = 15.861</script><!-- ws:end:WikiTextMathRule:8 --><br /> | ||
<br /> | <br /> | ||
Note that the value 15.861 is obtained by |0| + |-7.925| + |2.322| + |5.615|, which is the L1 norm of the vector.<br /> | Note that the value 15.861 is obtained by |0| + |-7.925| + |2.322| + |5.615|, which is the L1 norm of the vector.<br /> | ||
<br /> | <br /> | ||
To confirm this, we can put smonzo |0 -2 1&gt; back into rational form to see that it represents the interval 245/243. As the L1 norm is supposed to give log(n·d) for any interval n/d, we can confirm that we have the right answer above by noting that log(245·243) is indeed equal to 15.861.</body></html></pre></div> | To confirm this, we can put smonzo |0 -2 1&gt; back into rational form to see that it represents the interval 245/243. As the L1 norm is supposed to give log(n·d) for any interval n/d, we can confirm that we have the right answer above by noting that log(245·243) is indeed equal to 15.861.</body></html></pre></div> |