The Riemann zeta function and tuning: Difference between revisions

ArrowHead294 (talk | contribs)
ArrowHead294 (talk | contribs)
m Escapes not needed here
Line 49: Line 49:


=== Into the critical strip ===
=== Into the critical strip ===
So long as {{nowrap|''s'' ≤ 1}}, the absolute value of the zeta function can be seen as a relative error measurement. However, the rationale for that view of things departs when {{nowrap|''s'' < 1}}, particularly in the [http://mathworld.wolfram.com/CriticalStrip.html critical strip], when {{nowrap|0 < ''s'' < 1}}. As s approaches the value {{nowrap|''s'' {{=}} {{frac|2}}}} of the [http://mathworld.wolfram.com/CriticalLine.html critical line], the information content, so to speak, of the zeta function concerning higher primes increases and it behaves increasingly like a badness measure (or more correctly, since we have inverted it, like a goodness measure.) The quasi-symmetric [https://planetmath.org/encyclopedia/FunctionalEquationOfTheRiemannZetaFunction.html functional equation] of the zeta function tells us that past the critical line the information content starts to decrease again, with {{nowrap|1 − ''s''}} and ''s'' having the same information content. Hence it is the zeta function between {{nowrap|''s'' {{=}} {{frac|1|2}}}} and {{nowrap|''s'' {{=}} 1}}, and especially the zeta function along the critical line {{nowrap|''s'' {{=}} {{frac|1|2}}}}, which is of the most interest.
So long as {{nowrap|''s'' ≤ 1}}, the absolute value of the zeta function can be seen as a relative error measurement. However, the rationale for that view of things departs when {{nowrap|''s'' < 1}}, particularly in the [http://mathworld.wolfram.com/CriticalStrip.html critical strip], when {{nowrap|0 < ''s'' < 1}}. As s approaches the value {{nowrap|''s'' {{=}} {{frac|2}}}} of the [http://mathworld.wolfram.com/CriticalLine.html critical line], the information content, so to speak, of the zeta function concerning higher primes increases and it behaves increasingly like a badness measure (or more correctly, since we have inverted it, like a goodness measure.) The quasi-symmetric [https://planetmath.org/encyclopedia/FunctionalEquationOfTheRiemannZetaFunction.html functional equation] of the zeta function tells us that past the critical line the information content starts to decrease again, with {{nowrap|1 − ''s''}} and ''s'' having the same information content. Hence it is the zeta function between {{nowrap|''s'' {{=}} {{frac|1|2}}}} and {{nowrap|''s'' {{=}} 1}}, and especially the zeta function along the critical line {{nowrap|''s'' {{=}} {{frac|1|2}}}}, which is of the most interest.


As {{nowrap|''s'' > 1}} gets larger, the Dirichlet series for the zeta function is increasingly dominated by the 2 term, getting ever closer to simply {{nowrap|1 + 2<sup>&minus;''z''</sup>}}, which approaches 1 as {{nowrap|''s'' {{=}} Re(''z'')}} becomes larger. When {{nowrap|''s'' &gt;&gt; 1}} and ''x'' is an integer, the real part of zeta is approximately {{nowrap|1 + 2<sup>&minus;''s''</sup>}}, and the imaginary part is approximately zero; that is, zeta is approximately real. Starting from {{nowrap|''s'' {{=}} +&infin;}} with ''x'' an integer, we can trace a line back towards the critical strip on which zeta is real. Since when {{nowrap|''s'' &gt;&gt; 1}} the derivative is approximately {{nowrap|&minus;ln(2) / 2<sup>''s''</sup>}}, it is negative on this line of real values for zeta, meaning that the real value for zeta increases as ''s'' decreases. The zeta function approaches 1 uniformly as ''s'' increases to infinity, so as ''s'' decreases, the real-valued zeta function along this line of real values continues to increase though all real values from 1 to infinity monotonically. When it crosses the critical line where {{nowrap|''s'' {{=}} {{frac|2}}}}, it produces a real value of zeta on the critical line. Points on the critical line where {{nowrap|&zeta;({{frac|2}} + i''g'')}} are real are called "Gram points", after [[Wikipedia:Jørgen Pedersen Gram|Jørgen Pedersen Gram]]. We thus have associated pure-octave edos, where ''x'' is an integer, to a value near to the pure octave, at the special sorts of Gram points which corresponds to edos.
As {{nowrap|''s'' > 1}} gets larger, the Dirichlet series for the zeta function is increasingly dominated by the 2 term, getting ever closer to simply {{nowrap|1 + 2<sup>&minus;''z''</sup>}}, which approaches 1 as {{nowrap|''s'' {{=}} Re(''z'')}} becomes larger. When {{nowrap|''s'' &gt;&gt; 1}} and ''x'' is an integer, the real part of zeta is approximately {{nowrap|1 + 2<sup>&minus;''s''</sup>}}, and the imaginary part is approximately zero; that is, zeta is approximately real. Starting from {{nowrap|''s'' {{=}} +&infin;}} with ''x'' an integer, we can trace a line back towards the critical strip on which zeta is real. Since when {{nowrap|''s'' &gt;&gt; 1}} the derivative is approximately {{nowrap|&minus;ln(2) / 2<sup>''s''</sup>}}, it is negative on this line of real values for zeta, meaning that the real value for zeta increases as ''s'' decreases. The zeta function approaches 1 uniformly as ''s'' increases to infinity, so as ''s'' decreases, the real-valued zeta function along this line of real values continues to increase though all real values from 1 to infinity monotonically. When it crosses the critical line where {{nowrap|''s'' {{=}} {{frac|2}}}}, it produces a real value of zeta on the critical line. Points on the critical line where {{nowrap|&zeta;({{frac|2}} + i''g'')}} are real are called "Gram points", after [[Wikipedia:Jørgen Pedersen Gram|Jørgen Pedersen Gram]]. We thus have associated pure-octave edos, where ''x'' is an integer, to a value near to the pure octave, at the special sorts of Gram points which corresponds to edos.
Line 94: Line 94:
Note that for one of its neighbors, 271, it isn't entirely clear which peak value corresponds to the line of real values from +∞. This can be determined by looking at the absolute value of zeta along other ''s'' values, such as {{nowrap|''s'' {{=}} 1}} or {{nowrap|''s'' {{=}} {{frac|3|4}}}}, and in this case the local minimum at 271.069 is the value in question. However, other peak values are not without their interest; the local maximum at 270.941, for instance, is associated to a different mapping for 3.
Note that for one of its neighbors, 271, it isn't entirely clear which peak value corresponds to the line of real values from +∞. This can be determined by looking at the absolute value of zeta along other ''s'' values, such as {{nowrap|''s'' {{=}} 1}} or {{nowrap|''s'' {{=}} {{frac|3|4}}}}, and in this case the local minimum at 271.069 is the value in question. However, other peak values are not without their interest; the local maximum at 270.941, for instance, is associated to a different mapping for 3.


To generate this plot using the free version of Wolfram Cloud, you can run <code>Plot{{!(}}Abs{{!(}}RiemannSiegelZ{{!(}}9.06472028x{{))!}}, {{(}}x, 11.9, 12.1{{)}}{{)!}}</code> and then in the menu select '''Evaluation &gt; Evaluate Cells'''. Change "'''11.9'''" and "'''12.1'''" to whatever values you want, e.g. to view the curve around 15edo you might use the values "'''14.9'''" and "'''15.1'''".
To generate this plot using the free version of Wolfram Cloud, you can run <code>Plot[Abs[RiemannSiegelZ[9.06472028x]], {x, 11.9, 12.1}]</code> and then in the menu select '''Evaluation &gt; Evaluate Cells'''. Change "'''11.9'''" and "'''12.1'''" to whatever values you want, e.g. to view the curve around 15edo you might use the values "'''14.9'''" and "'''15.1'''".


You can also view the plot using [https://www.desmos.com/calculator/dstp7wnidf Zeta in Desmos].
You can also view the plot using [https://www.desmos.com/calculator/dstp7wnidf Zeta in Desmos].