Gallery of Z-polygon transversals: Difference between revisions
Wikispaces>genewardsmith **Imported revision 249611668 - Original comment: ** |
Wikispaces>xenwolf **Imported revision 249639544 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-08-31 06:42:30 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>249639544</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">In geometry, a [[http://en.wikipedia.org/wiki/Convex_set|convex set]] is a set of points such that for any two points in the set, the line segment connecting the points is also in the set. The [[http://en.wikipedia.org/wiki/Convex_hull|convex hull]] of a set of points is the minimal convex set containing the given set, or in other words the intersection of all convex sets containing the set. A Z-polytope is a set of points with integer coordinates, such that every point with integer coordinates in its convex hull is already contained in the Z-polytope. A Z-polygon is a two-dimensional Z-polytope. | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">In geometry, a [[http://en.wikipedia.org/wiki/Convex_set|convex set]] is a set of points such that for any two points in the set, the line segment connecting the points is also in the set. The [[http://en.wikipedia.org/wiki/Convex_hull|convex hull]] of a set of points is the minimal convex set containing the given set, or in other words the intersection of all convex sets containing the set. A Z-[[http://en.wikipedia.org/wiki/Polytope|polytope]] is a set of points with integer coordinates, such that every point with integer coordinates in its convex hull is already contained in the Z-polytope. A Z-polygon is a two-dimensional Z-polytope, or 2-polytope. | ||
</pre></div> | </pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Gallery of Z-polygon transversals</title></head><body>In geometry, a <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_set" rel="nofollow">convex set</a> is a set of points such that for any two points in the set, the line segment connecting the points is also in the set. The <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_hull" rel="nofollow">convex hull</a> of a set of points is the minimal convex set containing the given set, or in other words the intersection of all convex sets containing the set. A Z-polytope is a set of points with integer coordinates, such that every point with integer coordinates in its convex hull is already contained in the Z-polytope. A Z-polygon is a two-dimensional Z-polytope.</body></html></pre></div> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Gallery of Z-polygon transversals</title></head><body>In geometry, a <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_set" rel="nofollow">convex set</a> is a set of points such that for any two points in the set, the line segment connecting the points is also in the set. The <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_hull" rel="nofollow">convex hull</a> of a set of points is the minimal convex set containing the given set, or in other words the intersection of all convex sets containing the set. A Z-<a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Polytope" rel="nofollow">polytope</a> is a set of points with integer coordinates, such that every point with integer coordinates in its convex hull is already contained in the Z-polytope. A Z-polygon is a two-dimensional Z-polytope, or 2-polytope.</body></html></pre></div> |