Gallery of Z-polygon transversals: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 249742540 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 249755506 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-08-31 13:19:22 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-08-31 13:45:09 UTC</tt>.<br>
: The original revision id was <tt>249742540</tt>.<br>
: The original revision id was <tt>249755506</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 40: Line 40:
[[diamond9_2401|breedsmic]]
[[diamond9_2401|breedsmic]]
[[diamond9_4375|ragismic]]
[[diamond9_4375|ragismic]]
</pre></div>
 
=Dekatesserany (2x2x2 chord cube)=
[[deka_875|keemic]]
[[deka_245|sensamagic]]
[[deka_126|starling]]
[[deka_1728|orwellismic]]
[[deka_1029|gamelismic]]
[[deka_225|marvel]]
[[deka_5120|hemifamity]]
[[deka_6144|porwell]]
[[deka_65625|horwell]]
[[deka_2401|breedsmic]]
[[deka_4375|ragismic]]</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Gallery of Z-polygon transversals&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:6:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:6 --&gt;&lt;!-- ws:start:WikiTextTocRule:7: --&gt;&lt;a href="#Z-polytopes and convex closures"&gt;Z-polytopes and convex closures&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:7 --&gt;&lt;!-- ws:start:WikiTextTocRule:8: --&gt; | &lt;a href="#x7-limit diamond"&gt;7-limit diamond&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt; | &lt;a href="#x9-limit diamond"&gt;9-limit diamond&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Gallery of Z-polygon transversals&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:8:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:8 --&gt;&lt;!-- ws:start:WikiTextTocRule:9: --&gt;&lt;a href="#Z-polytopes and convex closures"&gt;Z-polytopes and convex closures&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:9 --&gt;&lt;!-- ws:start:WikiTextTocRule:10: --&gt; | &lt;a href="#x7-limit diamond"&gt;7-limit diamond&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt; | &lt;a href="#x9-limit diamond"&gt;9-limit diamond&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Dekatesserany (2x2x2 chord cube)"&gt;Dekatesserany (2x2x2 chord cube)&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt;
&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;br /&gt;
&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Z-polytopes and convex closures"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Z-polytopes and convex closures&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Z-polytopes and convex closures"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Z-polytopes and convex closures&lt;/h1&gt;
In geometry, a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_set" rel="nofollow"&gt;convex set&lt;/a&gt; is a set of points such that for any two points in the set, the line segment connecting the points is also in the set. The &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_hull" rel="nofollow"&gt;convex hull&lt;/a&gt; of a set of points is the minimal convex set containing the given set, or in other words the intersection of all convex sets containing the set. A &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_lattice_polytope" rel="nofollow"&gt;Z-polytope&lt;/a&gt; is a set of points with integer coordinates, such that every point with integer coordinates in its convex hull is already contained in the Z-polytope. A Z-polygon is a two-dimensional Z-polytope.&lt;br /&gt;
In geometry, a &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_set" rel="nofollow"&gt;convex set&lt;/a&gt; is a set of points such that for any two points in the set, the line segment connecting the points is also in the set. The &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_hull" rel="nofollow"&gt;convex hull&lt;/a&gt; of a set of points is the minimal convex set containing the given set, or in other words the intersection of all convex sets containing the set. A &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Convex_lattice_polytope" rel="nofollow"&gt;Z-polytope&lt;/a&gt; is a set of points with integer coordinates, such that every point with integer coordinates in its convex hull is already contained in the Z-polytope. A Z-polygon is a two-dimensional Z-polytope.&lt;br /&gt;
Line 75: Line 87:
&lt;a class="wiki_link" href="/diamond9_65625"&gt;horwell&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/diamond9_65625"&gt;horwell&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/diamond9_2401"&gt;breedsmic&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/diamond9_2401"&gt;breedsmic&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/diamond9_4375"&gt;ragismic&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>
&lt;a class="wiki_link" href="/diamond9_4375"&gt;ragismic&lt;/a&gt;&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:6:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc3"&gt;&lt;a name="Dekatesserany (2x2x2 chord cube)"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:6 --&gt;Dekatesserany (2x2x2 chord cube)&lt;/h1&gt;
&lt;a class="wiki_link" href="/deka_875"&gt;keemic&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/deka_245"&gt;sensamagic&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/deka_126"&gt;starling&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/deka_1728"&gt;orwellismic&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/deka_1029"&gt;gamelismic&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/deka_225"&gt;marvel&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/deka_5120"&gt;hemifamity&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/deka_6144"&gt;porwell&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/deka_65625"&gt;horwell&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/deka_2401"&gt;breedsmic&lt;/a&gt;&lt;br /&gt;
&lt;a class="wiki_link" href="/deka_4375"&gt;ragismic&lt;/a&gt;&lt;/body&gt;&lt;/html&gt;</pre></div>