Intervale raționale: Difference between revisions

AraMax (talk | contribs)
mNo edit summary
AraMax (talk | contribs)
m Canged redirect
Line 15: Line 15:
Când T este egal cu o secundă, obținem 1Hz. Cu cât mai mare este f (sau mai mic este T), atât mai înalt va fi sunetul obținut. Astfel, putem să analizăm distanța dintre 1 Hz și 2 Hz, care va fi reprezentat sub raportul de '''2/1''' sau '''1:2''', deoarece 2Hz/1Hz = 2/1. 1/2 s-ar putea considera identic considerând mărimea intervalului, ''însă va reprezenta o scădere a frecvenței*.'' Un lucru important de menționat e că acest raport este posibil pentru oricare notă.  
Când T este egal cu o secundă, obținem 1Hz. Cu cât mai mare este f (sau mai mic este T), atât mai înalt va fi sunetul obținut. Astfel, putem să analizăm distanța dintre 1 Hz și 2 Hz, care va fi reprezentat sub raportul de '''2/1''' sau '''1:2''', deoarece 2Hz/1Hz = 2/1. 1/2 s-ar putea considera identic considerând mărimea intervalului, ''însă va reprezenta o scădere a frecvenței*.'' Un lucru important de menționat e că acest raport este posibil pentru oricare notă.  


Fie n=100Hz. Dacă dorim să obținem frecvența notei 2/1 de la n, o vom înmulți cu raportul respectiv, obținând 200Hz. Dacă continuăm să adăugăm acest interval, nu vom obține 300Hz, ci 400Hz, deoarece acum înmulțim 200hz cu 2/1. Dacă continuăm să adăugăm același interval de mai multe ori, vom obține 400Hz 800Hz 1600Hz 3200Hz etc. Astfel noi nu adunăm intervale prin sumă, ci le înmulțim deoarece [[Logaritmicitatea frecvenței|frecvența este o măsură logaritmică]]. Cunoscând acest fapt, relativ cu frecvența inițială (n=100Hz), 200Hz, 400Hz, 800Hz, 1600Hz... vor fi reprezentate prin intervalele 2/1, 4/1, 8/1, 16/1, ș.a. Aici, notația care utilizează două puncte se utilizează mai ușor: 1:2:4:8:16...
Fie n=100Hz. Dacă dorim să obținem frecvența notei 2/1 de la n, o vom înmulți cu raportul respectiv, obținând 200Hz. Dacă continuăm să adăugăm acest interval, nu vom obține 300Hz, ci 400Hz, deoarece acum înmulțim 200hz cu 2/1. Dacă continuăm să adăugăm același interval de mai multe ori, vom obține 400Hz 800Hz 1600Hz 3200Hz etc. Astfel noi nu adunăm intervale prin sumă, ci le înmulțim deoarece [[Frecvență|frecvența este o măsură logaritmică]]. Cunoscând acest fapt, relativ cu frecvența inițială (n=100Hz), 200Hz, 400Hz, 800Hz, 1600Hz... vor fi reprezentate prin intervalele 2/1, 4/1, 8/1, 16/1, ș.a. Aici, notația care utilizează două puncte se utilizează mai ușor: 1:2:4:8:16...


Haide să ne uităm la un alte exemple. 3/2, 2:3 (sau 1.5/1). De la frecvența n=100Hz, nota 3/2 de la n va fi egală cu 100Hz × 3/2 = 150Hz.
Haide să ne uităm la un alte exemple. 3/2, 2:3 (sau 1.5/1). De la frecvența n=100Hz, nota 3/2 de la n va fi egală cu 100Hz × 3/2 = 150Hz.