Don Page comma: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 270153552 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 270164908 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-10-31 00:16:53 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-10-31 01:39:20 UTC</tt>.<br>
: The original revision id was <tt>270153552</tt>.<br>
: The original revision id was <tt>270164908</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">By a //Don Page comma// is meant a comma computed from two other intervals by the method suggested by the Don Page paper, [[http://arxiv.org/abs/0907.5249|Why the Kirnberger Kernel Is So Small]]. If a and b are two rational numbers &gt; 1, define r = ((a-1)(b+1)) / ((b-1)(a+1)). Suppose r reduced to lowest terms is p/q, and a and b are written in [[Monzos|monzo]] form as u and v. Then the Don Page comma is defined as DPC(a, b) = qu - pv, or else minus that if the size in cents is less than zero. The reason for introducing monzos is purely numerical; if monzos are not used the numerators and denominators of the Don Page comma quickly become so large they cannot easily be handled. In ratio form, the Don Page comma can be written a^q / b^p, or the reciprocal of that if that is less than 1.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">By a //Don Page comma// is meant a comma computed from two other intervals by the method suggested by the Don Page paper, [[http://arxiv.org/abs/0907.5249|Why the Kirnberger Kernel Is So Small]]. If a and b are two rational numbers &gt; 1, define r = ((a-1)(b+1)) / ((b-1)(a+1)). Suppose r reduced to lowest terms is p/q, and a and b are written in [[Monzos|monzo]] form as u and v. Then the Don Page comma is defined as DPC(a, b) = qu - pv, or else minus that if the size in cents is less than zero. The reason for introducing monzos is purely numerical; if monzos are not used the numerators and denominators of the Don Page comma quickly become so large they cannot easily be handled. In ratio form, the Don Page comma can be written a^q / b^p, or the reciprocal of that if that is less than 1.


Successive superparticular ratios such as 10/9 and 11/10 or 12/11 and 13/12 exhibit a distinct tendency to produce strong (in the sense of low badness figures for the corresponding temperament) Don Page commas, but these are by no means the only examples.
If we write r as ((a-1)/(a+1)) / ((b-1)/(b+1)), then presuming the Don Page comma is a true [[comma]], and therefore not a power of any other rational number, we have that it is equal to a^((b-1)/(b+1)) / b^((a-1)/(a+1)). If we set a = 1+x, b = 1+y, then r = r(x, y) is an analytic function of two complex variables with a power series expansion around x=0, y=0. This expansion begans as r(x, y) = 1 - (xy^3 - x^3y)/24 + ..., and so when x and y are small, r(x, y) will be close to 1.
 
Successive superparticular ratios such as 10/9 and 11/10 or 12/11 and 13/12 exhibit a distinct tendency to produce strong (in the sense of low badness figures for the corresponding temperament) Don Page commas, not surprising when we note that in this case the first non-constant term of the one-variable expansion is of order five, but these are by no means the only examples.


Here are some 5-limit Don Page commas:
Here are some 5-limit Don Page commas:
Line 52: Line 54:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Don Page comma&lt;/title&gt;&lt;/head&gt;&lt;body&gt;By a &lt;em&gt;Don Page comma&lt;/em&gt; is meant a comma computed from two other intervals by the method suggested by the Don Page paper, &lt;a class="wiki_link_ext" href="http://arxiv.org/abs/0907.5249" rel="nofollow"&gt;Why the Kirnberger Kernel Is So Small&lt;/a&gt;. If a and b are two rational numbers &amp;gt; 1, define r = ((a-1)(b+1)) / ((b-1)(a+1)). Suppose r reduced to lowest terms is p/q, and a and b are written in &lt;a class="wiki_link" href="/Monzos"&gt;monzo&lt;/a&gt; form as u and v. Then the Don Page comma is defined as DPC(a, b) = qu - pv, or else minus that if the size in cents is less than zero. The reason for introducing monzos is purely numerical; if monzos are not used the numerators and denominators of the Don Page comma quickly become so large they cannot easily be handled. In ratio form, the Don Page comma can be written a^q / b^p, or the reciprocal of that if that is less than 1.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;Don Page comma&lt;/title&gt;&lt;/head&gt;&lt;body&gt;By a &lt;em&gt;Don Page comma&lt;/em&gt; is meant a comma computed from two other intervals by the method suggested by the Don Page paper, &lt;a class="wiki_link_ext" href="http://arxiv.org/abs/0907.5249" rel="nofollow"&gt;Why the Kirnberger Kernel Is So Small&lt;/a&gt;. If a and b are two rational numbers &amp;gt; 1, define r = ((a-1)(b+1)) / ((b-1)(a+1)). Suppose r reduced to lowest terms is p/q, and a and b are written in &lt;a class="wiki_link" href="/Monzos"&gt;monzo&lt;/a&gt; form as u and v. Then the Don Page comma is defined as DPC(a, b) = qu - pv, or else minus that if the size in cents is less than zero. The reason for introducing monzos is purely numerical; if monzos are not used the numerators and denominators of the Don Page comma quickly become so large they cannot easily be handled. In ratio form, the Don Page comma can be written a^q / b^p, or the reciprocal of that if that is less than 1.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Successive superparticular ratios such as 10/9 and 11/10 or 12/11 and 13/12 exhibit a distinct tendency to produce strong (in the sense of low badness figures for the corresponding temperament) Don Page commas, but these are by no means the only examples.&lt;br /&gt;
If we write r as ((a-1)/(a+1)) / ((b-1)/(b+1)), then presuming the Don Page comma is a true &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;, and therefore not a power of any other rational number, we have that it is equal to a^((b-1)/(b+1)) / b^((a-1)/(a+1)). If we set a = 1+x, b = 1+y, then r = r(x, y) is an analytic function of two complex variables with a power series expansion around x=0, y=0. This expansion begans as r(x, y) = 1 - (xy^3 - x^3y)/24 + ..., and so when x and y are small, r(x, y) will be close to 1.&lt;br /&gt;
&lt;br /&gt;
Successive superparticular ratios such as 10/9 and 11/10 or 12/11 and 13/12 exhibit a distinct tendency to produce strong (in the sense of low badness figures for the corresponding temperament) Don Page commas, not surprising when we note that in this case the first non-constant term of the one-variable expansion is of order five, but these are by no means the only examples.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
Here are some 5-limit Don Page commas:&lt;br /&gt;
Here are some 5-limit Don Page commas:&lt;br /&gt;