User:Ganaram inukshuk/7L 3s: Difference between revisions

Ganaram inukshuk (talk | contribs)
Test page for proposed rewrite
 
Ganaram inukshuk (talk | contribs)
No edit summary
Line 1: Line 1:
{{MOS intro}}
{{Mbox|type=notice|text=This page is an in-progress rewrite for a main-namespace page. For the current page, see [[7L 3s]].}}
 
{{MOS intro|Scale Signature=7L 3s}}
Graham Breed has a  page on his website dedicated to 7+3 scales. He proposes calling the large step "t" for "tone", lowercase because the large step is a narrow neutral tone, and the small step "q" for "quartertone", because the small step is often close to a quartertone. (Note that the small step is not a quartertone in every instance of 7+3, so do not take that "q" literally.) Thus we have:
Graham Breed has a  page on his website dedicated to 7+3 scales. He proposes calling the large step "t" for "tone", lowercase because the large step is a narrow neutral tone, and the small step "q" for "quartertone", because the small step is often close to a quartertone. (Note that the small step is not a quartertone in every instance of 7+3, so do not take that "q" literally.) Thus we have:


t q t t t q t t q t
t q t t t q t t q t
== Names==
==Names==
This MOS is called '''dicoid''' (from [[dicot]], an exotemperament) in [[TAMNAMS]].
This MOS is called '''dicoid''' (from [[dicot]], an exotemperament) in [[TAMNAMS]].


==Intervals==
==Intervals==
The generator (g) will fall between 343 cents (2\7 - two degrees of [[7edo|7edo]] and 360 cents (3\10 - three degrees of [[10edo|10edo]]), hence a neutral third.
The generator (g) will fall between 343 cents (2\7 - two degrees of [[7edo]] and 360 cents (3\10 - three degrees of [[10edo]]), hence a neutral third.


2g, then, will fall between 686 cents (4\7) and 720 cents (3\5), the range of [[5L 2s|diatonic]] fifths.
2g, then, will fall between 686 cents (4\7) and 720 cents (3\5), the range of [[5L 2s|diatonic]] fifths.
Line 21: Line 23:
!# generators up
!# generators up
!Notation (1/1 = 0)
!Notation (1/1 = 0)
! name
!name
!In L's and s's
!In L's and s's
!# generators up
!# generators up
! Notation of 2/1 inverse
!Notation of 2/1 inverse
! name
!name
! In L's and s's
!In L's and s's
|-
|-
| colspan="8" style="text-align:center" |The 10-note MOS has the following intervals (from some root):
| colspan="8" style="text-align:center" | The 10-note MOS has the following intervals (from some root):
|-
|-
| 0
|0
|0
|0
|perfect unison
|perfect unison
Line 39: Line 41:
|7L+3s
|7L+3s
|-
|-
| 1
|1
| 7
|7
|perfect 7-step
| perfect 7-step
|5L+2s
|5L+2s
| -1
| -1
Line 60: Line 62:
|1
|1
|major (1-)step
|major (1-)step
| 1L
|1L
| -3
| -3
|9v
|9v
| minor 9-step
|minor 9-step
|6L+3s
|6L+3s
|-
|-
Line 69: Line 71:
|8
|8
|major 8-step
|major 8-step
| 6L+2s
|6L+2s
| -4
| -4
|2v
|2v
Line 78: Line 80:
|5
|5
|major 5-step
|major 5-step
|4L+1s
| 4L+1s
| -5
| -5
|5v
|5v
| minor 5-step
|minor 5-step
| 3L+2s
| 3L+2s
|-
|-
|6
|6
|2
|2
| major 2-step
|major 2-step
|2L
|2L
| -6
| -6
Line 99: Line 101:
| -7
| -7
|1v
|1v
| minor (1-)step
|minor (1-)step
|1s
|1s
|-
|-
Line 105: Line 107:
|6^
|6^
|major 6-step
|major 6-step
| 5L+1s
|5L+1s
| -8
| -8
|4v
|4v
|minor 4-step
|minor 4-step
| 2L+2s
|2L+2s
|-
|-
|9
|9
|3^
|3^
| augmented 3-step
| augmented 3-step
|3L
| 3L
| -9
| -9
|7v
|7v
Line 122: Line 124:
|10
|10
|0^
|0^
| augmented unison
|augmented unison
|1L-1s
|1L-1s
| -10
| -10
Line 131: Line 133:
|11
|11
|7^
|7^
| augmented 7-step
|augmented 7-step
|6L+1s
|6L+1s
| -11
| -11
Line 145: Line 147:
|4L
|4L
| -12
| -12
| 6v
|6v
|diminished 6-step
|diminished 6-step
|3L+3s
|3L+3s
Line 154: Line 156:
|2L-1s
|2L-1s
| -13
| -13
| 9w
|9w
|diminished 9-step
|diminished 9-step
|5L+4s
|5L+4s
Line 162: Line 164:
|augmented 8-step
|augmented 8-step
|8L+1s
|8L+1s
| -14
| -14
|2w
|2w
|diminished 2-step
|diminished 2-step
Line 169: Line 171:
|15
|15
|5^
|5^
|augmented 5-step
| augmented 5-step
| 5L
|5L
| -15
| -15
|5w
|5w
| diminished 5-step
|diminished 5-step
|2L+3s
|2L+3s
|-
|-
|16
|16
|2^
|2^
| augmented 2-step
|augmented 2-step
|3L-1s
|3L-1s
| -16
| -16
Line 185: Line 187:
|4L+4s
|4L+4s
|}
|}
== Scale tree ==
==Scale tree ==
The generator range reflects two extremes: one where L = s (3\10), and another where s = 0 (2\7). Between these extremes, there is an infinite continuum of possible generator sizes. By taking freshman sums of the two edges (adding the numerators, then adding the denominators), we can fill in this continuum with compatible edos, increasing in number of tones as we continue filling in the in-betweens. Thus, the smallest in-between edo would be (3+2)\(10+7) = 5\17 – five degrees of [[17edo]]:
The generator range reflects two extremes: one where L = s (3\10), and another where s = 0 (2\7). Between these extremes, there is an infinite continuum of possible generator sizes. By taking freshman sums of the two edges (adding the numerators, then adding the denominators), we can fill in this continuum with compatible edos, increasing in number of tones as we continue filling in the in-betweens. Thus, the smallest in-between edo would be (3+2)\(10+7) = 5\17 – five degrees of [[17edo]]:


{| class="wikitable center-all"
{| class="wikitable center-all"
! colspan="6" rowspan="2" | Generator
! colspan="6" rowspan="2" |Generator
! colspan="2" | Cents
! colspan="2" |Cents
! rowspan="2" | L
! rowspan="2" |L
! rowspan="2" | s
! rowspan="2" |s
! rowspan="2" | L/s
! rowspan="2" |L/s
! rowspan="2" | Comments
! rowspan="2" |Comments
|-
|-
! Chroma-positive
!Chroma-positive
! Chroma-negative
!Chroma-negative
|-
|-
| 7\10 || || || || || || 840.000 || 360.000 || 1 || 1 || 1.000 ||  
| 7\10|| || || || || ||840.000||360.000||1 || 1||1.000||
|-
|-
| || || || || || 40\57 || 842.105 || 357.895 || 6 || 5 || 1.200 || Restles↑
| || || || || ||40\57||842.105||357.895||6||5||1.200||Restles↑
|-
|-
| || || || || 33\47 || || 842.553 || 357.447 || 5 || 4 || 1.250 ||  
| || || || || 33\47|| ||842.553||357.447||5 || 4||1.250||
|-
|-
| || || || || || 59\84 || 842.857 || 357.143 || 9 || 7 || 1.286 ||  
| || || || || ||59\84||842.857||357.143||9 || 7||1.286||
|-
|-
| || || || 26\37 || || || 843.243 || 356.757 || 4 || 3 || 1.333 ||  
| || || || 26\37|| || ||843.243||356.757||4 || 3||1.333||
|-
|-
| || || || || || 71\101 || 843.564 || 356.436 || 11 || 8 || 1.375 ||  
| || || || || ||71\101||843.564||356.436 ||11 || 8||1.375||
|-
|-
| || || || || 45\64 || || 843.750 || 356.250 || 7 || 5 || 1.400 || Beatles
| || || || || 45\64|| ||843.750||356.250||7||5||1.400||Beatles
|-
|-
| || || || || || 64\91 || 843.956 || 356.044 || 10 || 7 || 1.428 ||  
| || || || || ||64\91||843.956||356.044 ||10 || 7||1.428||
|-
|-
| || || 19\27 || || || || 844.444 || 355.556 || 3 || 2 || 1.500 || L/s = 3/2, suhajira/ringo
| || ||19\27 || || || ||844.444||355.556|| 3 ||2 ||1.500||L/s = 3/2, suhajira/ringo
|-
|-
| || || || || || 69\98 || 844.698 || 355.102 || 11 || 7 || 1.571 ||  
| || || || || ||69\98||844.698||355.102 ||11 || 7||1.571||
|-
|-
| || || || || 50\71 || || 845.070 || 354.930 || 8 || 5 || 1.600 ||  
| || || || || 50\71|| ||845.070||354.930||8 || 5||1.600||
|-
|-
| || || || || || 81\115 || 845.217 || 354.783 || 13 || 8 || 1.625 || Golden suhajira
| || || || || ||81\115||845.217||354.783 ||13||8||1.625||Golden suhajira
|-
|-
| || || || 31\44 || || || 845.455 || 354.545 || 5 || 3 || 1.667 ||  
| || || || 31\44|| || ||845.455||354.545||5 || 3||1.667||
|-
|-
| || || || || || 74\105 || 845.714 || 354.286 || 12 || 7 || 1.714 ||  
| || || || || ||74\105||845.714||354.286 ||12 || 7||1.714||
|-
|-
| || || || || 43\61 || || 845.902 || 354.098 || 7 || 4 || 1.750 ||
| || || || || 43\61|| ||845.902||354.098||7||4 || 1.750 ||
|-
|-
| || || || || || 55\78 || 846.154 || 353.846 || 9 || 5 || 1.800 ||
| || || || || ||55\78||846.154||353.846||9||5|| 1.800 ||
|-
|-
| || 12\17 || || || || || 847.059 || 352.941 || 2 || 1 || 2.000 || Basic dicoid<br>(Generators smaller than this are proper)
| ||12\17 || || || || ||847.059||352.941||2 ||1||2.000||Basic dicoid<br>(Generators smaller than this are proper)
|-
|-
| || || || || || 53\75 || 848.000 || 352.000 || 9 || 4 || 2.250 ||
| || || || || ||53\75||848.000||352.000||9||4 || 2.250||
|-
|-
| || || || || 41\58 || || 848.273 || 351.724 || 7 || 3 || 2.333 ||  
| || || || || 41\58|| ||848.273||351.724||7 || 3||2.333||
|-
|-
| || || || || || 70\99 || 848.485 || 351.515 || 12 || 5 || 2.400 || Hemif/hemififths
| || || || || ||70\99||848.485||351.515 ||12||5||2.400||Hemif/hemififths
|-
|-
| || || || 29\41 || || || 848.780 || 351.220 || 5 || 2 || 2.500 || Mohaha/neutrominant
| || || || 29\41|| || ||848.780||351.220||5||2||2.500||Mohaha/neutrominant
|-
|-
| || || || || || 75\106 || 849.057 || 350.943 || 13 || 5 || 2.600 || Hemif/salsa/karadeniz
| || || || || ||75\106||849.057||350.943 ||13||5||2.600||Hemif/salsa/karadeniz
|-
|-
| || || || || 46\65 || || 849.231 || 350.769 || 8 || 3 || 2.667 || Mohaha/mohamaq
| || || || || 46\65|| ||849.231||350.769||8||3||2.667 || Mohaha/mohamaq
|-
|-
| || || || || || 63\89 || 849.438 || 350.562 || 11 || 4 || 2.750 ||
| || || || || ||63\89||849.438||350.562||11||4 ||2.750 ||
|-
|-
| || || 17\24 || || || || 850.000 || 350.000 || 3 || 1 || 3.000 || L/s = 3/1
| || ||17\24 || || || ||850.000||350.000|| 3 ||1||3.000||L/s = 3/1
|-
|-
| || || || || || 56\79 || 850.633 || 349.367 || 10 || 3 || 3.333 ||
| || || || || ||56\79||850.633||349.367||10||3 || 3.333||
|-
|-
| || || || || 39\55 || || 850.909 || 349.091 || 7 || 2 || 3.500 ||  
| || || || || 39\55|| ||850.909||349.091||7 || 2||3.500||
|-
|-
| || || || || || 61\86 || 851.163 || 348.837 || 11 || 3 || 3.667 ||  
| || || || || ||61\86||851.163||348.837 ||11 || 3||3.667||
|-
|-
| || || || 22\31 || || || 851.613 || 348.387 || 4 || 1 || 4.000 || Mohaha/migration/mohajira
| || || || 22\31|| || ||851.613||348.387||4||1||4.000||Mohaha/migration/mohajira
|-
|-
| || || || || || 49\69 || 852.174 || 347.826 || 9 || 2 || 4.500 ||  
| || || || || ||49\69||852.174||347.826||9 || 2||4.500||
|-
|-
| || || || || 27\38 || || 852.632|| 347.368 || 5 || 1 || 5.000 ||  
| || || || ||27\38|| || 852.632||347.368||5 || 1||5.000||
|-
|-
| || || || || || 32\45 || 853.333 || 346.667 || 6 || 1 || 6.000 || Mohaha/ptolemy
| || || || || ||32\45||853.333||346.667||6||1||6.000 ||Mohaha/ptolemy
|-
|-
| 5\7 || || || || || || 857.143 || 342.857 || 1 || 0 || → inf ||
|5\7|| || || || || ||857.143||342.857||1||0||→ inf||
|}
|}


Line 272: Line 274:
You can also build this scale by stacking neutral thirds that are not members of edos – for instance, frequency ratios 11:9, 49:40, 27:22, 16:13 – or the square root of 3:2 (a bisected just perfect fifth).
You can also build this scale by stacking neutral thirds that are not members of edos – for instance, frequency ratios 11:9, 49:40, 27:22, 16:13 – or the square root of 3:2 (a bisected just perfect fifth).


== Rank-2 temperaments ==
==Rank-2 temperaments==
==7-note subsets==
== 7-note subsets==
If you stop the chain at 7 tones, you have a heptatonic scale of the form [[3L_4s|3L 4s]]:
If you stop the chain at 7 tones, you have a heptatonic scale of the form [[3L 4s]]:


L s s L s L s
L s s L s L s
Line 312: Line 314:


q t a
q t a
[[Category:10-tone scales]]