Map of rank-2 temperaments: Difference between revisions
→Five periods per octave: Converted this section into a table matching the earlier sections. (I think that the latter half of Map of Rank-2 Temperaments as it is currently is trying to cover the same ground as Fractional-Octave Temperaments, but doing it less well. So I am converting it into a table matching the first half, so that it's not treading on the toes of Fractional-Octave Temperaments.) |
|||
Line 1,561: | Line 1,561: | ||
==Five periods per octave== | ==Five periods per octave== | ||
{| class="wikitable" | |||
==Six periods per octave== | ! colspan="7" |Generator | ||
<ul><li>[[ | ! !!Cents !!Comments | ||
|- | |||
|0\5 || || || || || | |||
| | |||
| || || | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|1\30 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
|1\25 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|2\45 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
|1\20 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|3\55 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
|2\35 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|3\50 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| || 1\15|| || || || | |||
| | |||
| || ||[[Blackwood]]/[[Blacksmith]] | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|4\55 | |||
| | |||
| | |||
| | |||
| | |||
|Blackwood/Blacksmith | |||
|- | |||
| | |||
| | |||
| | |||
|3\40 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|Blackwood/Blacksmith | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|5\65 | |||
| | |||
| | |||
| | |||
| | |||
|Blackwood | |||
|- | |||
| | |||
| | |||
|2\25 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|Blackwood | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|5\60 | |||
| | |||
| | |||
| | |||
| | |||
|Blackwood | |||
|- | |||
| | |||
| | |||
| | |||
|3\35 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|Blackwood | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|4\45 | |||
| | |||
| | |||
| | |||
| | |||
|Blackwood | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|5\55 | |||
| | |||
| | |||
| | |||
|Blackwood | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|6\65 | |||
| | |||
| | |||
|Blackwood | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|7\75 | |||
| | |||
|Blackwood | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|8\85 | |||
| | |||
|Blackwood/[[Phi as a Generator|Elderthing]] | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|9\95 | |||
| | |||
|Blackwood | |||
|- | |||
|1\10 | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| | |||
|Blackwood | |||
|} | |||
==Six periods per octave == | |||
<ul><li>[[Hexe]] - The 2.5.7 subgroup is represented using [[6edo]], and the generator gets you to 4/3 and 3/2. Makes little sense not to additionally temper down to [[12edo]].</li></ul> | |||
==Seven periods per octave== | ==Seven periods per octave== | ||
<ul><li>[[ | <ul><li>[[Whitewood]] - Analogue of blackwood. The prime 3 is represented using 7edo, the generator is used for 5.</li><li>[[Jamesbond]]/[[septimal]] - The 5-limit (and in septimal the prime 11) is represented using [[7edo]], and the generator is only used for intervals of 7.</li><li>[[Sevond]] - 10/9 is tempered to be exactly 1\7 of an octave. Therefore 3/2 is 1 generator sharp of a 7edo step and 5/4 is 2 generators sharp.</li><li>[[Absurdity]] - A complex temperament (perhaps "absurdly" so).</li></ul> | ||
==Eight periods per octave== | ==Eight periods per octave== | ||
<ul><li>[[ | <ul><li>[[Octoid]] - 16-cent generator, sub-cent accuracy.</li></ul> | ||
==Nine periods per octave== | ==Nine periods per octave== | ||
<ul><li>[[ | <ul><li>[[Ennealimmal]] - The generator is 49.02 cents, and don't forget the ".02" because it really is that accurate.</li></ul> | ||
==Twelve periods per octave== | ==Twelve periods per octave== | ||
See also: [[ | See also: [[Pythagorean family]] | ||
Temperaments in this family are interesting because they can be thought of as [[ | Temperaments in this family are interesting because they can be thought of as [[12edo]] with microtonal alterations. | ||
<ul><li>[[ | <ul><li>[[Compton]] - 3-limit as in 12edo; intervals of 5 are off by one generator. In the 7-limit (sometimes called [[waage]]), intervals of 7 are off by two generators. In the 11-limit, intervals of 11 are off by 3 generators. Thinking of [[72edo]] might make this more concrete.</li><li>[[Catler]] - 5-limit as in 12edo; intervals of 7 are off by one generator.</li><li>[[Atomic]] - Does not temper out the schisma, so 3/2 is one schisma sharp of its 12edo value. In atomic, since twelve fifths are sharp of seven octaves by twelve schismas, the Pythagorean comma is twelve schismas, and hence 81/80, the Didymus comma, is eleven schismas. In fact eleven schismas is sharp of 81/80, and twelve schismas of the Pythaorean comma, by the microscopic interval of the atom, which atomic tempers out. Extremely accurate.</li></ul> | ||
== See also == | ==See also== | ||
* [[Fractional-octave temperaments]] | *[[Fractional-octave temperaments]] | ||
[[Category:Rank 2]] | [[Category:Rank 2]] | ||
[[Category:Lists of temperaments]] | [[Category:Lists of temperaments]] |