|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | Below are listed the [[Dyadic_chord|dyadic chords]] of 11-limit [[Gravity_family#Harry|harry temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismicmic, and by 243/242 rastmic. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-12-26 07:40:26 UTC</tt>.<br>
| |
| : The original revision id was <tt>288485796</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Below are listed the [[Dyadic chord|dyadic chords]] of 11-limit [[Gravity family#Harry|harry temperament]]. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismicmic, and by 243/242 rastmic. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove.
| |
|
| |
|
| The normal mapping for harry is har = [<2 4 7 7 9|, <0 -6 -17 -10 -15|]. From this we may derive a val v = har[1] - 100 har[2] = <2 604 1707 1007 1509| which we may use to sort and normalize the chords of harry. Under "Chord" is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column. | | The normal mapping for harry is har = [<2 4 7 7 9|, <0 -6 -17 -10 -15|]. From this we may derive a val v = har[1] - 100 har[2] = <2 604 1707 1007 1509| which we may use to sort and normalize the chords of harry. Under "Chord" is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column. |
|
| |
|
| Harry has MOS of size 14, 16, 30, 44, 58 and 72. It may be seen that 14 notes, and even more 16 notes, supply enough chords to be interesting. There is essentially no advantage in accuracy to optimizing for [[Breed family#Jove, aka Wonder|jove temperament]] rather than harry; in addition to what jove tempers out, harry tempers out 4000/3993. However, POTE tuning, for example, shrinks the three cents of this comma to -0.0827 cents, which is hardly worth worrying about. Hence harry is one way of exploring and organizing the chords of jove, which are therefore also listed below. | | Harry has MOS of size 14, 16, 30, 44, 58 and 72. It may be seen that 14 notes, and even more 16 notes, supply enough chords to be interesting. There is essentially no advantage in accuracy to optimizing for [[Breed_family#Jove, aka Wonder|jove temperament]] rather than harry; in addition to what jove tempers out, harry tempers out 4000/3993. However, POTE tuning, for example, shrinks the three cents of this comma to -0.0827 cents, which is hardly worth worrying about. Hence harry is one way of exploring and organizing the chords of jove, which are therefore also listed below. |
|
| |
|
| =Triads= | | =Triads= |
| || Number || Chord || Transversal || Type || Complexity || | | |
| || 1 || 0-201-401 || 1-9/7-7/6 || swetismic || 8 || | | {| class="wikitable" |
| || 2 || 0-202-401 || 1-20/11-7/6 || swetismic || 8 || | | |- |
| || 3 || 0-202-501 || 1-20/11-10/9 || utonal || 10 || | | | | Number |
| || 4 || 0-301-501 || 1-11/9-10/9 || otonal || 10 || | | | | Chord |
| || 5 || 0-201-502 || 1-9/7-11/7 || otonal || 10 || | | | | Transversal |
| || 6 || 0-301-502 || 1-11/9-11/7 || utonal || 10 || | | | | Type |
| || 7 || 0-201-602 || 1-9/7-3/2 || utonal || 12 || | | | | Complexity |
| || 8 || 0-301-602 || 1-11/9-3/2 || rastmic || 12 || | | |- |
| || 9 || 0-401-602 || 1-7/6-3/2 || otonal || 12 || | | | | 1 |
| || 10 || 0-201-702 || 1-9/7-10/7 || otonal || 14 || | | | | 0-201-401 |
| || 11 || 0-202-702 || 1-20/11-10/7 || utonal || 14 || | | | | 1-9/7-7/6 |
| || 12 || 0-301-702 || 1-11/9-10/7 || swetismic || 14 || | | | | swetismic |
| || 13 || 0-401-702 || 1-7/6-10/7 || swetismic || 14 || | | | | 8 |
| || 14 || 0-501-702 || 1-10/9-10/7 || utonal || 14 || | | |- |
| || 15 || 0-502-702 || 1-11/7-10/7 || otonal || 14 || | | | | 2 |
| || 16 || 0-201-903 || 1-9/7-11/6 || swetismic || 18 || | | | | 0-202-401 |
| || 17 || 0-301-903 || 1-11/9-11/6 || utonal || 18 || | | | | 1-20/11-7/6 |
| || 18 || 0-401-903 || 1-7/6-11/6 || otonal || 18 || | | | | swetismic |
| || 19 || 0-502-903 || 1-11/7-11/6 || utonal || 18 || | | | | 8 |
| || 20 || 0-602-903 || 1-3/2-11/6 || otonal || 18 || | | |- |
| || 21 || 0-702-903 || 1-10/7-11/6 || swetismic || 18 || | | | | 3 |
| || 22 || 0-301-1003 || 1-11/9-7/4 || werckismic || 20 || | | | | 0-202-501 |
| || 23 || 0-401-1003 || 1-7/6-7/4 || utonal || 20 || | | | | 1-20/11-10/9 |
| || 24 || 0-501-1003 || 1-10/9-7/4 || werckismic || 20 || | | | | utonal |
| || 25 || 0-502-1003 || 1-11/7-7/4 || werckismic || 20 || | | | | 10 |
| || 26 || 0-602-1003 || 1-3/2-7/4 || otonal || 20 || | | |- |
| || 27 || 0-702-1003 || 1-10/7-7/4 || werckismic || 20 || | | | | 4 |
| || 28 || 0-202-1103 || 1-20/11-5/3 || utonal || 22 || | | | | 0-301-501 |
| || 29 || 0-401-1103 || 1-7/6-5/3 || otonal || 22 || | | | | 1-11/9-10/9 |
| || 30 || 0-501-1103 || 1-10/9-5/3 || utonal || 22 || | | | | otonal |
| || 31 || 0-602-1103 || 1-3/2-5/3 || otonal || 22 || | | | | 10 |
| || 32 || 0-702-1103 || 1-10/7-5/3 || utonal || 22 || | | |- |
| || 33 || 0-903-1103 || 1-11/6-5/3 || otonal || 22 || | | | | 5 |
| || 34 || 0-201-1202 || 1-9/7-9/8 || utonal || 24 || | | | | 0-201-502 |
| || 35 || 0-301-1202 || 1-11/9-9/8 || rastmic || 24 || | | | | 1-9/7-11/7 |
| || 36 || 0-502-1202 || 1-11/7-9/8 || werckismic || 24 || | | | | otonal |
| || 37 || 0-602-1202 || 1-3/2-9/8 || ambitonal || 24 || | | | | 10 |
| || 38 || 0-702-1202 || 1-10/7-9/8 || werckismic || 24 || | | |- |
| || 39 || 0-903-1202 || 1-11/6-9/8 || rastmic || 24 || | | | | 6 |
| || 40 || 0-1003-1202 || 1-7/4-9/8 || otonal || 24 || | | | | 0-301-502 |
| || 41 || 0-301-1503 || 1-11/9-11/8 || utonal || 30 || | | | | 1-11/9-11/7 |
| || 42 || 0-502-1503 || 1-11/7-11/8 || utonal || 30 || | | | | utonal |
| || 43 || 0-602-1503 || 1-3/2-11/8 || otonal || 30 || | | | | 10 |
| || 44 || 0-903-1503 || 1-11/6-11/8 || utonal || 30 || | | |- |
| || 45 || 0-1003-1503 || 1-7/4-11/8 || otonal || 30 || | | | | 7 |
| || 46 || 0-1202-1503 || 1-9/8-11/8 || otonal || 30 || | | | | 0-201-602 |
| || 47 || 0-202-1703 || 1-20/11-5/4 || utonal || 34 || | | | | 1-9/7-3/2 |
| || 48 || 0-501-1703 || 1-10/9-5/4 || utonal || 34 || | | | | utonal |
| || 49 || 0-602-1703 || 1-3/2-5/4 || otonal || 34 || | | | | 12 |
| || 50 || 0-702-1703 || 1-10/7-5/4 || utonal || 34 || | | |- |
| || 51 || 0-1003-1703 || 1-7/4-5/4 || otonal || 34 || | | | | 8 |
| || 52 || 0-1103-1703 || 1-5/3-5/4 || utonal || 34 || | | | | 0-301-602 |
| || 53 || 0-1202-1703 || 1-9/8-5/4 || otonal || 34 || | | | | 1-11/9-3/2 |
| || 54 || 0-1503-1703 || 1-11/8-5/4 || otonal || 34 || | | | | rastmic |
| | | | 12 |
| | |- |
| | | | 9 |
| | | | 0-401-602 |
| | | | 1-7/6-3/2 |
| | | | otonal |
| | | | 12 |
| | |- |
| | | | 10 |
| | | | 0-201-702 |
| | | | 1-9/7-10/7 |
| | | | otonal |
| | | | 14 |
| | |- |
| | | | 11 |
| | | | 0-202-702 |
| | | | 1-20/11-10/7 |
| | | | utonal |
| | | | 14 |
| | |- |
| | | | 12 |
| | | | 0-301-702 |
| | | | 1-11/9-10/7 |
| | | | swetismic |
| | | | 14 |
| | |- |
| | | | 13 |
| | | | 0-401-702 |
| | | | 1-7/6-10/7 |
| | | | swetismic |
| | | | 14 |
| | |- |
| | | | 14 |
| | | | 0-501-702 |
| | | | 1-10/9-10/7 |
| | | | utonal |
| | | | 14 |
| | |- |
| | | | 15 |
| | | | 0-502-702 |
| | | | 1-11/7-10/7 |
| | | | otonal |
| | | | 14 |
| | |- |
| | | | 16 |
| | | | 0-201-903 |
| | | | 1-9/7-11/6 |
| | | | swetismic |
| | | | 18 |
| | |- |
| | | | 17 |
| | | | 0-301-903 |
| | | | 1-11/9-11/6 |
| | | | utonal |
| | | | 18 |
| | |- |
| | | | 18 |
| | | | 0-401-903 |
| | | | 1-7/6-11/6 |
| | | | otonal |
| | | | 18 |
| | |- |
| | | | 19 |
| | | | 0-502-903 |
| | | | 1-11/7-11/6 |
| | | | utonal |
| | | | 18 |
| | |- |
| | | | 20 |
| | | | 0-602-903 |
| | | | 1-3/2-11/6 |
| | | | otonal |
| | | | 18 |
| | |- |
| | | | 21 |
| | | | 0-702-903 |
| | | | 1-10/7-11/6 |
| | | | swetismic |
| | | | 18 |
| | |- |
| | | | 22 |
| | | | 0-301-1003 |
| | | | 1-11/9-7/4 |
| | | | werckismic |
| | | | 20 |
| | |- |
| | | | 23 |
| | | | 0-401-1003 |
| | | | 1-7/6-7/4 |
| | | | utonal |
| | | | 20 |
| | |- |
| | | | 24 |
| | | | 0-501-1003 |
| | | | 1-10/9-7/4 |
| | | | werckismic |
| | | | 20 |
| | |- |
| | | | 25 |
| | | | 0-502-1003 |
| | | | 1-11/7-7/4 |
| | | | werckismic |
| | | | 20 |
| | |- |
| | | | 26 |
| | | | 0-602-1003 |
| | | | 1-3/2-7/4 |
| | | | otonal |
| | | | 20 |
| | |- |
| | | | 27 |
| | | | 0-702-1003 |
| | | | 1-10/7-7/4 |
| | | | werckismic |
| | | | 20 |
| | |- |
| | | | 28 |
| | | | 0-202-1103 |
| | | | 1-20/11-5/3 |
| | | | utonal |
| | | | 22 |
| | |- |
| | | | 29 |
| | | | 0-401-1103 |
| | | | 1-7/6-5/3 |
| | | | otonal |
| | | | 22 |
| | |- |
| | | | 30 |
| | | | 0-501-1103 |
| | | | 1-10/9-5/3 |
| | | | utonal |
| | | | 22 |
| | |- |
| | | | 31 |
| | | | 0-602-1103 |
| | | | 1-3/2-5/3 |
| | | | otonal |
| | | | 22 |
| | |- |
| | | | 32 |
| | | | 0-702-1103 |
| | | | 1-10/7-5/3 |
| | | | utonal |
| | | | 22 |
| | |- |
| | | | 33 |
| | | | 0-903-1103 |
| | | | 1-11/6-5/3 |
| | | | otonal |
| | | | 22 |
| | |- |
| | | | 34 |
| | | | 0-201-1202 |
| | | | 1-9/7-9/8 |
| | | | utonal |
| | | | 24 |
| | |- |
| | | | 35 |
| | | | 0-301-1202 |
| | | | 1-11/9-9/8 |
| | | | rastmic |
| | | | 24 |
| | |- |
| | | | 36 |
| | | | 0-502-1202 |
| | | | 1-11/7-9/8 |
| | | | werckismic |
| | | | 24 |
| | |- |
| | | | 37 |
| | | | 0-602-1202 |
| | | | 1-3/2-9/8 |
| | | | ambitonal |
| | | | 24 |
| | |- |
| | | | 38 |
| | | | 0-702-1202 |
| | | | 1-10/7-9/8 |
| | | | werckismic |
| | | | 24 |
| | |- |
| | | | 39 |
| | | | 0-903-1202 |
| | | | 1-11/6-9/8 |
| | | | rastmic |
| | | | 24 |
| | |- |
| | | | 40 |
| | | | 0-1003-1202 |
| | | | 1-7/4-9/8 |
| | | | otonal |
| | | | 24 |
| | |- |
| | | | 41 |
| | | | 0-301-1503 |
| | | | 1-11/9-11/8 |
| | | | utonal |
| | | | 30 |
| | |- |
| | | | 42 |
| | | | 0-502-1503 |
| | | | 1-11/7-11/8 |
| | | | utonal |
| | | | 30 |
| | |- |
| | | | 43 |
| | | | 0-602-1503 |
| | | | 1-3/2-11/8 |
| | | | otonal |
| | | | 30 |
| | |- |
| | | | 44 |
| | | | 0-903-1503 |
| | | | 1-11/6-11/8 |
| | | | utonal |
| | | | 30 |
| | |- |
| | | | 45 |
| | | | 0-1003-1503 |
| | | | 1-7/4-11/8 |
| | | | otonal |
| | | | 30 |
| | |- |
| | | | 46 |
| | | | 0-1202-1503 |
| | | | 1-9/8-11/8 |
| | | | otonal |
| | | | 30 |
| | |- |
| | | | 47 |
| | | | 0-202-1703 |
| | | | 1-20/11-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 48 |
| | | | 0-501-1703 |
| | | | 1-10/9-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 49 |
| | | | 0-602-1703 |
| | | | 1-3/2-5/4 |
| | | | otonal |
| | | | 34 |
| | |- |
| | | | 50 |
| | | | 0-702-1703 |
| | | | 1-10/7-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 51 |
| | | | 0-1003-1703 |
| | | | 1-7/4-5/4 |
| | | | otonal |
| | | | 34 |
| | |- |
| | | | 52 |
| | | | 0-1103-1703 |
| | | | 1-5/3-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 53 |
| | | | 0-1202-1703 |
| | | | 1-9/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |- |
| | | | 54 |
| | | | 0-1503-1703 |
| | | | 1-11/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |} |
|
| |
|
| =Tetrads= | | =Tetrads= |
| || Number || Chord || Transversal || Type || Complexity || | | |
| || 1 || 0-201-401-602 || 1-9/7-7/6-3/2 || swetismic || 12 || | | {| class="wikitable" |
| || 2 || 0-201-401-702 || 1-9/7-7/6-10/7 || swetismic || 14 || | | |- |
| || 3 || 0-202-401-702 || 1-20/11-7/6-10/7 || swetismic || 14 || | | | | Number |
| || 4 || 0-202-501-702 || 1-20/11-10/9-10/7 || utonal || 14 || | | | | Chord |
| || 5 || 0-301-501-702 || 1-11/9-10/9-10/7 || swetismic || 14 || | | | | Transversal |
| || 6 || 0-201-502-702 || 1-9/7-11/7-10/7 || otonal || 14 || | | | | Type |
| || 7 || 0-301-502-702 || 1-11/9-11/7-10/7 || swetismic || 14 || | | | | Complexity |
| || 8 || 0-201-401-903 || 1-9/7-7/6-11/6 || swetismic || 18 || | | |- |
| || 9 || 0-201-502-903 || 1-9/7-11/7-11/6 || swetismic || 18 || | | | | 1 |
| || 10 || 0-301-502-903 || 1-11/9-11/7-11/6 || utonal || 18 || | | | | 0-201-401-602 |
| || 11 || 0-201-602-903 || 1-9/7-3/2-11/6 || swetismic || 18 || | | | | 1-9/7-7/6-3/2 |
| || 12 || 0-301-602-903 || 1-11/9-3/2-11/6 || rastmic || 18 || | | | | swetismic |
| || 13 || 0-401-602-903 || 1-7/6-3/2-11/6 || otonal || 18 || | | | | 12 |
| || 14 || 0-201-702-903 || 1-9/7-10/7-11/6 || swetismic || 18 || | | |- |
| || 15 || 0-301-702-903 || 1-11/9-10/7-11/6 || swetismic || 18 || | | | | 2 |
| || 16 || 0-401-702-903 || 1-7/6-10/7-11/6 || swetismic || 18 || | | | | 0-201-401-702 |
| || 17 || 0-502-702-903 || 1-11/7-10/7-11/6 || swetismic || 18 || | | | | 1-9/7-7/6-10/7 |
| || 18 || 0-301-501-1003 || 1-11/9-10/9-7/4 || werckismic || 20 || | | | | swetismic |
| || 19 || 0-301-502-1003 || 1-11/9-11/7-7/4 || werckismic || 20 || | | | | 14 |
| || 20 || 0-301-602-1003 || 1-11/9-3/2-7/4 || jove || 20 || | | |- |
| || 21 || 0-401-602-1003 || 1-7/6-3/2-7/4 || ambitonal || 20 || | | | | 3 |
| || 22 || 0-301-702-1003 || 1-11/9-10/7-7/4 || jove || 20 || | | | | 0-202-401-702 |
| || 23 || 0-401-702-1003 || 1-7/6-10/7-7/4 || jove || 20 || | | | | 1-20/11-7/6-10/7 |
| || 24 || 0-501-702-1003 || 1-10/9-10/7-7/4 || werckismic || 20 || | | | | swetismic |
| || 25 || 0-502-702-1003 || 1-11/7-10/7-7/4 || werckismic || 20 || | | | | 14 |
| || 26 || 0-202-401-1103 || 1-20/11-7/6-5/3 || swetismic || 22 || | | |- |
| || 27 || 0-202-501-1103 || 1-20/11-10/9-5/3 || utonal || 22 || | | | | 4 |
| || 28 || 0-401-602-1103 || 1-7/6-3/2-5/3 || otonal || 22 || | | | | 0-202-501-702 |
| || 29 || 0-202-702-1103 || 1-20/11-10/7-5/3 || utonal || 22 || | | | | 1-20/11-10/9-10/7 |
| || 30 || 0-401-702-1103 || 1-7/6-10/7-5/3 || swetismic || 22 || | | | | utonal |
| || 31 || 0-501-702-1103 || 1-10/9-10/7-5/3 || utonal || 22 || | | | | 14 |
| || 32 || 0-401-903-1103 || 1-7/6-11/6-5/3 || otonal || 22 || | | |- |
| || 33 || 0-602-903-1103 || 1-3/2-11/6-5/3 || otonal || 22 || | | | | 5 |
| || 34 || 0-702-903-1103 || 1-10/7-11/6-5/3 || swetismic || 22 || | | | | 0-301-501-702 |
| || 35 || 0-201-502-1202 || 1-9/7-11/7-9/8 || werckismic || 24 || | | | | 1-11/9-10/9-10/7 |
| || 36 || 0-301-502-1202 || 1-11/9-11/7-9/8 || jove || 24 || | | | | swetismic |
| || 37 || 0-201-602-1202 || 1-9/7-3/2-9/8 || utonal || 24 || | | | | 14 |
| || 38 || 0-301-602-1202 || 1-11/9-3/2-9/8 || rastmic || 24 || | | |- |
| || 39 || 0-201-702-1202 || 1-9/7-10/7-9/8 || werckismic || 24 || | | | | 6 |
| || 40 || 0-301-702-1202 || 1-11/9-10/7-9/8 || jove || 24 || | | | | 0-201-502-702 |
| || 41 || 0-502-702-1202 || 1-11/7-10/7-9/8 || werckismic || 24 || | | | | 1-9/7-11/7-10/7 |
| || 42 || 0-201-903-1202 || 1-9/7-11/6-9/8 || jove || 24 || | | | | otonal |
| || 43 || 0-301-903-1202 || 1-11/9-11/6-9/8 || rastmic || 24 || | | | | 14 |
| || 44 || 0-502-903-1202 || 1-11/7-11/6-9/8 || jove || 24 || | | |- |
| || 45 || 0-602-903-1202 || 1-3/2-11/6-9/8 || rastmic || 24 || | | | | 7 |
| || 46 || 0-702-903-1202 || 1-10/7-11/6-9/8 || jove || 24 || | | | | 0-301-502-702 |
| || 47 || 0-301-1003-1202 || 1-11/9-7/4-9/8 || jove || 24 || | | | | 1-11/9-11/7-10/7 |
| || 48 || 0-502-1003-1202 || 1-11/7-7/4-9/8 || werckismic || 24 || | | | | swetismic |
| || 49 || 0-602-1003-1202 || 1-3/2-7/4-9/8 || otonal || 24 || | | | | 14 |
| || 50 || 0-702-1003-1202 || 1-10/7-7/4-9/8 || werckismic || 24 || | | |- |
| || 51 || 0-301-502-1503 || 1-11/9-11/7-11/8 || utonal || 30 || | | | | 8 |
| || 52 || 0-301-602-1503 || 1-11/9-3/2-11/8 || rastmic || 30 || | | | | 0-201-401-903 |
| || 53 || 0-301-903-1503 || 1-11/9-11/6-11/8 || utonal || 30 || | | | | 1-9/7-7/6-11/6 |
| || 54 || 0-502-903-1503 || 1-11/7-11/6-11/8 || utonal || 30 || | | | | swetismic |
| || 55 || 0-602-903-1503 || 1-3/2-11/6-11/8 || ambitonal || 30 || | | | | 18 |
| || 56 || 0-301-1003-1503 || 1-11/9-7/4-11/8 || werckismic || 30 || | | |- |
| || 57 || 0-502-1003-1503 || 1-11/7-7/4-11/8 || werckismic || 30 || | | | | 9 |
| || 58 || 0-602-1003-1503 || 1-3/2-7/4-11/8 || otonal || 30 || | | | | 0-201-502-903 |
| || 59 || 0-301-1202-1503 || 1-11/9-9/8-11/8 || rastmic || 30 || | | | | 1-9/7-11/7-11/6 |
| || 60 || 0-502-1202-1503 || 1-11/7-9/8-11/8 || werckismic || 30 || | | | | swetismic |
| || 61 || 0-602-1202-1503 || 1-3/2-9/8-11/8 || otonal || 30 || | | | | 18 |
| || 62 || 0-903-1202-1503 || 1-11/6-9/8-11/8 || rastmic || 30 || | | |- |
| || 63 || 0-1003-1202-1503 || 1-7/4-9/8-11/8 || otonal || 30 || | | | | 10 |
| || 64 || 0-202-501-1703 || 1-20/11-10/9-5/4 || utonal || 34 || | | | | 0-301-502-903 |
| || 65 || 0-202-702-1703 || 1-20/11-10/7-5/4 || utonal || 34 || | | | | 1-11/9-11/7-11/6 |
| || 66 || 0-501-702-1703 || 1-10/9-10/7-5/4 || utonal || 34 || | | | | utonal |
| || 67 || 0-501-1003-1703 || 1-10/9-7/4-5/4 || werckismic || 34 || | | | | 18 |
| || 68 || 0-602-1003-1703 || 1-3/2-7/4-5/4 || otonal || 34 || | | |- |
| || 69 || 0-702-1003-1703 || 1-10/7-7/4-5/4 || werckismic || 34 || | | | | 11 |
| || 70 || 0-202-1103-1703 || 1-20/11-5/3-5/4 || utonal || 34 || | | | | 0-201-602-903 |
| || 71 || 0-501-1103-1703 || 1-10/9-5/3-5/4 || utonal || 34 || | | | | 1-9/7-3/2-11/6 |
| || 72 || 0-602-1103-1703 || 1-3/2-5/3-5/4 || ambitonal || 34 || | | | | swetismic |
| || 73 || 0-702-1103-1703 || 1-10/7-5/3-5/4 || utonal || 34 || | | | | 18 |
| || 74 || 0-602-1202-1703 || 1-3/2-9/8-5/4 || otonal || 34 || | | |- |
| || 75 || 0-702-1202-1703 || 1-10/7-9/8-5/4 || werckismic || 34 || | | | | 12 |
| || 76 || 0-1003-1202-1703 || 1-7/4-9/8-5/4 || otonal || 34 || | | | | 0-301-602-903 |
| || 77 || 0-602-1503-1703 || 1-3/2-11/8-5/4 || otonal || 34 || | | | | 1-11/9-3/2-11/6 |
| || 78 || 0-1003-1503-1703 || 1-7/4-11/8-5/4 || otonal || 34 || | | | | rastmic |
| || 79 || 0-1202-1503-1703 || 1-9/8-11/8-5/4 || otonal || 34 || | | | | 18 |
| | |- |
| | | | 13 |
| | | | 0-401-602-903 |
| | | | 1-7/6-3/2-11/6 |
| | | | otonal |
| | | | 18 |
| | |- |
| | | | 14 |
| | | | 0-201-702-903 |
| | | | 1-9/7-10/7-11/6 |
| | | | swetismic |
| | | | 18 |
| | |- |
| | | | 15 |
| | | | 0-301-702-903 |
| | | | 1-11/9-10/7-11/6 |
| | | | swetismic |
| | | | 18 |
| | |- |
| | | | 16 |
| | | | 0-401-702-903 |
| | | | 1-7/6-10/7-11/6 |
| | | | swetismic |
| | | | 18 |
| | |- |
| | | | 17 |
| | | | 0-502-702-903 |
| | | | 1-11/7-10/7-11/6 |
| | | | swetismic |
| | | | 18 |
| | |- |
| | | | 18 |
| | | | 0-301-501-1003 |
| | | | 1-11/9-10/9-7/4 |
| | | | werckismic |
| | | | 20 |
| | |- |
| | | | 19 |
| | | | 0-301-502-1003 |
| | | | 1-11/9-11/7-7/4 |
| | | | werckismic |
| | | | 20 |
| | |- |
| | | | 20 |
| | | | 0-301-602-1003 |
| | | | 1-11/9-3/2-7/4 |
| | | | jove |
| | | | 20 |
| | |- |
| | | | 21 |
| | | | 0-401-602-1003 |
| | | | 1-7/6-3/2-7/4 |
| | | | ambitonal |
| | | | 20 |
| | |- |
| | | | 22 |
| | | | 0-301-702-1003 |
| | | | 1-11/9-10/7-7/4 |
| | | | jove |
| | | | 20 |
| | |- |
| | | | 23 |
| | | | 0-401-702-1003 |
| | | | 1-7/6-10/7-7/4 |
| | | | jove |
| | | | 20 |
| | |- |
| | | | 24 |
| | | | 0-501-702-1003 |
| | | | 1-10/9-10/7-7/4 |
| | | | werckismic |
| | | | 20 |
| | |- |
| | | | 25 |
| | | | 0-502-702-1003 |
| | | | 1-11/7-10/7-7/4 |
| | | | werckismic |
| | | | 20 |
| | |- |
| | | | 26 |
| | | | 0-202-401-1103 |
| | | | 1-20/11-7/6-5/3 |
| | | | swetismic |
| | | | 22 |
| | |- |
| | | | 27 |
| | | | 0-202-501-1103 |
| | | | 1-20/11-10/9-5/3 |
| | | | utonal |
| | | | 22 |
| | |- |
| | | | 28 |
| | | | 0-401-602-1103 |
| | | | 1-7/6-3/2-5/3 |
| | | | otonal |
| | | | 22 |
| | |- |
| | | | 29 |
| | | | 0-202-702-1103 |
| | | | 1-20/11-10/7-5/3 |
| | | | utonal |
| | | | 22 |
| | |- |
| | | | 30 |
| | | | 0-401-702-1103 |
| | | | 1-7/6-10/7-5/3 |
| | | | swetismic |
| | | | 22 |
| | |- |
| | | | 31 |
| | | | 0-501-702-1103 |
| | | | 1-10/9-10/7-5/3 |
| | | | utonal |
| | | | 22 |
| | |- |
| | | | 32 |
| | | | 0-401-903-1103 |
| | | | 1-7/6-11/6-5/3 |
| | | | otonal |
| | | | 22 |
| | |- |
| | | | 33 |
| | | | 0-602-903-1103 |
| | | | 1-3/2-11/6-5/3 |
| | | | otonal |
| | | | 22 |
| | |- |
| | | | 34 |
| | | | 0-702-903-1103 |
| | | | 1-10/7-11/6-5/3 |
| | | | swetismic |
| | | | 22 |
| | |- |
| | | | 35 |
| | | | 0-201-502-1202 |
| | | | 1-9/7-11/7-9/8 |
| | | | werckismic |
| | | | 24 |
| | |- |
| | | | 36 |
| | | | 0-301-502-1202 |
| | | | 1-11/9-11/7-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 37 |
| | | | 0-201-602-1202 |
| | | | 1-9/7-3/2-9/8 |
| | | | utonal |
| | | | 24 |
| | |- |
| | | | 38 |
| | | | 0-301-602-1202 |
| | | | 1-11/9-3/2-9/8 |
| | | | rastmic |
| | | | 24 |
| | |- |
| | | | 39 |
| | | | 0-201-702-1202 |
| | | | 1-9/7-10/7-9/8 |
| | | | werckismic |
| | | | 24 |
| | |- |
| | | | 40 |
| | | | 0-301-702-1202 |
| | | | 1-11/9-10/7-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 41 |
| | | | 0-502-702-1202 |
| | | | 1-11/7-10/7-9/8 |
| | | | werckismic |
| | | | 24 |
| | |- |
| | | | 42 |
| | | | 0-201-903-1202 |
| | | | 1-9/7-11/6-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 43 |
| | | | 0-301-903-1202 |
| | | | 1-11/9-11/6-9/8 |
| | | | rastmic |
| | | | 24 |
| | |- |
| | | | 44 |
| | | | 0-502-903-1202 |
| | | | 1-11/7-11/6-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 45 |
| | | | 0-602-903-1202 |
| | | | 1-3/2-11/6-9/8 |
| | | | rastmic |
| | | | 24 |
| | |- |
| | | | 46 |
| | | | 0-702-903-1202 |
| | | | 1-10/7-11/6-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 47 |
| | | | 0-301-1003-1202 |
| | | | 1-11/9-7/4-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 48 |
| | | | 0-502-1003-1202 |
| | | | 1-11/7-7/4-9/8 |
| | | | werckismic |
| | | | 24 |
| | |- |
| | | | 49 |
| | | | 0-602-1003-1202 |
| | | | 1-3/2-7/4-9/8 |
| | | | otonal |
| | | | 24 |
| | |- |
| | | | 50 |
| | | | 0-702-1003-1202 |
| | | | 1-10/7-7/4-9/8 |
| | | | werckismic |
| | | | 24 |
| | |- |
| | | | 51 |
| | | | 0-301-502-1503 |
| | | | 1-11/9-11/7-11/8 |
| | | | utonal |
| | | | 30 |
| | |- |
| | | | 52 |
| | | | 0-301-602-1503 |
| | | | 1-11/9-3/2-11/8 |
| | | | rastmic |
| | | | 30 |
| | |- |
| | | | 53 |
| | | | 0-301-903-1503 |
| | | | 1-11/9-11/6-11/8 |
| | | | utonal |
| | | | 30 |
| | |- |
| | | | 54 |
| | | | 0-502-903-1503 |
| | | | 1-11/7-11/6-11/8 |
| | | | utonal |
| | | | 30 |
| | |- |
| | | | 55 |
| | | | 0-602-903-1503 |
| | | | 1-3/2-11/6-11/8 |
| | | | ambitonal |
| | | | 30 |
| | |- |
| | | | 56 |
| | | | 0-301-1003-1503 |
| | | | 1-11/9-7/4-11/8 |
| | | | werckismic |
| | | | 30 |
| | |- |
| | | | 57 |
| | | | 0-502-1003-1503 |
| | | | 1-11/7-7/4-11/8 |
| | | | werckismic |
| | | | 30 |
| | |- |
| | | | 58 |
| | | | 0-602-1003-1503 |
| | | | 1-3/2-7/4-11/8 |
| | | | otonal |
| | | | 30 |
| | |- |
| | | | 59 |
| | | | 0-301-1202-1503 |
| | | | 1-11/9-9/8-11/8 |
| | | | rastmic |
| | | | 30 |
| | |- |
| | | | 60 |
| | | | 0-502-1202-1503 |
| | | | 1-11/7-9/8-11/8 |
| | | | werckismic |
| | | | 30 |
| | |- |
| | | | 61 |
| | | | 0-602-1202-1503 |
| | | | 1-3/2-9/8-11/8 |
| | | | otonal |
| | | | 30 |
| | |- |
| | | | 62 |
| | | | 0-903-1202-1503 |
| | | | 1-11/6-9/8-11/8 |
| | | | rastmic |
| | | | 30 |
| | |- |
| | | | 63 |
| | | | 0-1003-1202-1503 |
| | | | 1-7/4-9/8-11/8 |
| | | | otonal |
| | | | 30 |
| | |- |
| | | | 64 |
| | | | 0-202-501-1703 |
| | | | 1-20/11-10/9-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 65 |
| | | | 0-202-702-1703 |
| | | | 1-20/11-10/7-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 66 |
| | | | 0-501-702-1703 |
| | | | 1-10/9-10/7-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 67 |
| | | | 0-501-1003-1703 |
| | | | 1-10/9-7/4-5/4 |
| | | | werckismic |
| | | | 34 |
| | |- |
| | | | 68 |
| | | | 0-602-1003-1703 |
| | | | 1-3/2-7/4-5/4 |
| | | | otonal |
| | | | 34 |
| | |- |
| | | | 69 |
| | | | 0-702-1003-1703 |
| | | | 1-10/7-7/4-5/4 |
| | | | werckismic |
| | | | 34 |
| | |- |
| | | | 70 |
| | | | 0-202-1103-1703 |
| | | | 1-20/11-5/3-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 71 |
| | | | 0-501-1103-1703 |
| | | | 1-10/9-5/3-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 72 |
| | | | 0-602-1103-1703 |
| | | | 1-3/2-5/3-5/4 |
| | | | ambitonal |
| | | | 34 |
| | |- |
| | | | 73 |
| | | | 0-702-1103-1703 |
| | | | 1-10/7-5/3-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 74 |
| | | | 0-602-1202-1703 |
| | | | 1-3/2-9/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |- |
| | | | 75 |
| | | | 0-702-1202-1703 |
| | | | 1-10/7-9/8-5/4 |
| | | | werckismic |
| | | | 34 |
| | |- |
| | | | 76 |
| | | | 0-1003-1202-1703 |
| | | | 1-7/4-9/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |- |
| | | | 77 |
| | | | 0-602-1503-1703 |
| | | | 1-3/2-11/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |- |
| | | | 78 |
| | | | 0-1003-1503-1703 |
| | | | 1-7/4-11/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |- |
| | | | 79 |
| | | | 0-1202-1503-1703 |
| | | | 1-9/8-11/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |} |
|
| |
|
| =Pentads= | | =Pentads= |
| || Number || Chord || Transversal || Type || Complexity || | | |
| || 1 || 0-201-401-602-903 || 1-9/7-7/6-3/2-11/6 || swetismic || 18 || | | {| class="wikitable" |
| || 2 || 0-201-401-702-903 || 1-9/7-7/6-10/7-11/6 || swetismic || 18 || | | |- |
| || 3 || 0-201-502-702-903 || 1-9/7-11/7-10/7-11/6 || swetismic || 18 || | | | | Number |
| || 4 || 0-301-502-702-903 || 1-11/9-11/7-10/7-11/6 || swetismic || 18 || | | | | Chord |
| || 5 || 0-301-501-702-1003 || 1-11/9-10/9-10/7-7/4 || jove || 20 || | | | | Transversal |
| || 6 || 0-301-502-702-1003 || 1-11/9-11/7-10/7-7/4 || jove || 20 || | | | | Type |
| || 7 || 0-202-401-702-1103 || 1-20/11-7/6-10/7-5/3 || swetismic || 22 || | | | | Complexity |
| || 8 || 0-202-501-702-1103 || 1-20/11-10/9-10/7-5/3 || utonal || 22 || | | |- |
| || 9 || 0-401-602-903-1103 || 1-7/6-3/2-11/6-5/3 || otonal || 22 || | | | | 1 |
| || 10 || 0-401-702-903-1103 || 1-7/6-10/7-11/6-5/3 || swetismic || 22 || | | | | 0-201-401-602-903 |
| || 11 || 0-201-502-702-1202 || 1-9/7-11/7-10/7-9/8 || werckismic || 24 || | | | | 1-9/7-7/6-3/2-11/6 |
| || 12 || 0-301-502-702-1202 || 1-11/9-11/7-10/7-9/8 || jove || 24 || | | | | swetismic |
| || 13 || 0-201-502-903-1202 || 1-9/7-11/7-11/6-9/8 || jove || 24 || | | | | 18 |
| || 14 || 0-301-502-903-1202 || 1-11/9-11/7-11/6-9/8 || jove || 24 || | | |- |
| || 15 || 0-201-602-903-1202 || 1-9/7-3/2-11/6-9/8 || jove || 24 || | | | | 2 |
| || 16 || 0-301-602-903-1202 || 1-11/9-3/2-11/6-9/8 || rastmic || 24 || | | | | 0-201-401-702-903 |
| || 17 || 0-201-702-903-1202 || 1-9/7-10/7-11/6-9/8 || jove || 24 || | | | | 1-9/7-7/6-10/7-11/6 |
| || 18 || 0-301-702-903-1202 || 1-11/9-10/7-11/6-9/8 || jove || 24 || | | | | swetismic |
| || 19 || 0-502-702-903-1202 || 1-11/7-10/7-11/6-9/8 || jove || 24 || | | | | 18 |
| || 20 || 0-301-502-1003-1202 || 1-11/9-11/7-7/4-9/8 || jove || 24 || | | |- |
| || 21 || 0-301-602-1003-1202 || 1-11/9-3/2-7/4-9/8 || jove || 24 || | | | | 3 |
| || 22 || 0-301-702-1003-1202 || 1-11/9-10/7-7/4-9/8 || jove || 24 || | | | | 0-201-502-702-903 |
| || 23 || 0-502-702-1003-1202 || 1-11/7-10/7-7/4-9/8 || werckismic || 24 || | | | | 1-9/7-11/7-10/7-11/6 |
| || 24 || 0-301-502-903-1503 || 1-11/9-11/7-11/6-11/8 || utonal || 30 || | | | | swetismic |
| || 25 || 0-301-602-903-1503 || 1-11/9-3/2-11/6-11/8 || rastmic || 30 || | | | | 18 |
| || 26 || 0-301-502-1003-1503 || 1-11/9-11/7-7/4-11/8 || werckismic || 30 || | | |- |
| || 27 || 0-301-602-1003-1503 || 1-11/9-3/2-7/4-11/8 || jove || 30 || | | | | 4 |
| || 28 || 0-301-502-1202-1503 || 1-11/9-11/7-9/8-11/8 || jove || 30 || | | | | 0-301-502-702-903 |
| || 29 || 0-301-602-1202-1503 || 1-11/9-3/2-9/8-11/8 || rastmic || 30 || | | | | 1-11/9-11/7-10/7-11/6 |
| || 30 || 0-301-903-1202-1503 || 1-11/9-11/6-9/8-11/8 || rastmic || 30 || | | | | swetismic |
| || 31 || 0-502-903-1202-1503 || 1-11/7-11/6-9/8-11/8 || jove || 30 || | | | | 18 |
| || 32 || 0-602-903-1202-1503 || 1-3/2-11/6-9/8-11/8 || rastmic || 30 || | | |- |
| || 33 || 0-301-1003-1202-1503 || 1-11/9-7/4-9/8-11/8 || jove || 30 || | | | | 5 |
| || 34 || 0-502-1003-1202-1503 || 1-11/7-7/4-9/8-11/8 || werckismic || 30 || | | | | 0-301-501-702-1003 |
| || 35 || 0-602-1003-1202-1503 || 1-3/2-7/4-9/8-11/8 || otonal || 30 || | | | | 1-11/9-10/9-10/7-7/4 |
| || 36 || 0-202-501-702-1703 || 1-20/11-10/9-10/7-5/4 || utonal || 34 || | | | | jove |
| || 37 || 0-501-702-1003-1703 || 1-10/9-10/7-7/4-5/4 || werckismic || 34 || | | | | 20 |
| || 38 || 0-202-501-1103-1703 || 1-20/11-10/9-5/3-5/4 || utonal || 34 || | | |- |
| || 39 || 0-202-702-1103-1703 || 1-20/11-10/7-5/3-5/4 || utonal || 34 || | | | | 6 |
| || 40 || 0-501-702-1103-1703 || 1-10/9-10/7-5/3-5/4 || utonal || 34 || | | | | 0-301-502-702-1003 |
| || 41 || 0-602-1003-1202-1703 || 1-3/2-7/4-9/8-5/4 || otonal || 34 || | | | | 1-11/9-11/7-10/7-7/4 |
| || 42 || 0-702-1003-1202-1703 || 1-10/7-7/4-9/8-5/4 || werckismic || 34 || | | | | jove |
| || 43 || 0-602-1003-1503-1703 || 1-3/2-7/4-11/8-5/4 || otonal || 34 || | | | | 20 |
| || 44 || 0-602-1202-1503-1703 || 1-3/2-9/8-11/8-5/4 || otonal || 34 || | | |- |
| || 45 || 0-1003-1202-1503-1703 || 1-7/4-9/8-11/8-5/4 || otonal || 34 || | | | | 7 |
| | | | 0-202-401-702-1103 |
| | | | 1-20/11-7/6-10/7-5/3 |
| | | | swetismic |
| | | | 22 |
| | |- |
| | | | 8 |
| | | | 0-202-501-702-1103 |
| | | | 1-20/11-10/9-10/7-5/3 |
| | | | utonal |
| | | | 22 |
| | |- |
| | | | 9 |
| | | | 0-401-602-903-1103 |
| | | | 1-7/6-3/2-11/6-5/3 |
| | | | otonal |
| | | | 22 |
| | |- |
| | | | 10 |
| | | | 0-401-702-903-1103 |
| | | | 1-7/6-10/7-11/6-5/3 |
| | | | swetismic |
| | | | 22 |
| | |- |
| | | | 11 |
| | | | 0-201-502-702-1202 |
| | | | 1-9/7-11/7-10/7-9/8 |
| | | | werckismic |
| | | | 24 |
| | |- |
| | | | 12 |
| | | | 0-301-502-702-1202 |
| | | | 1-11/9-11/7-10/7-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 13 |
| | | | 0-201-502-903-1202 |
| | | | 1-9/7-11/7-11/6-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 14 |
| | | | 0-301-502-903-1202 |
| | | | 1-11/9-11/7-11/6-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 15 |
| | | | 0-201-602-903-1202 |
| | | | 1-9/7-3/2-11/6-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 16 |
| | | | 0-301-602-903-1202 |
| | | | 1-11/9-3/2-11/6-9/8 |
| | | | rastmic |
| | | | 24 |
| | |- |
| | | | 17 |
| | | | 0-201-702-903-1202 |
| | | | 1-9/7-10/7-11/6-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 18 |
| | | | 0-301-702-903-1202 |
| | | | 1-11/9-10/7-11/6-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 19 |
| | | | 0-502-702-903-1202 |
| | | | 1-11/7-10/7-11/6-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 20 |
| | | | 0-301-502-1003-1202 |
| | | | 1-11/9-11/7-7/4-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 21 |
| | | | 0-301-602-1003-1202 |
| | | | 1-11/9-3/2-7/4-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 22 |
| | | | 0-301-702-1003-1202 |
| | | | 1-11/9-10/7-7/4-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 23 |
| | | | 0-502-702-1003-1202 |
| | | | 1-11/7-10/7-7/4-9/8 |
| | | | werckismic |
| | | | 24 |
| | |- |
| | | | 24 |
| | | | 0-301-502-903-1503 |
| | | | 1-11/9-11/7-11/6-11/8 |
| | | | utonal |
| | | | 30 |
| | |- |
| | | | 25 |
| | | | 0-301-602-903-1503 |
| | | | 1-11/9-3/2-11/6-11/8 |
| | | | rastmic |
| | | | 30 |
| | |- |
| | | | 26 |
| | | | 0-301-502-1003-1503 |
| | | | 1-11/9-11/7-7/4-11/8 |
| | | | werckismic |
| | | | 30 |
| | |- |
| | | | 27 |
| | | | 0-301-602-1003-1503 |
| | | | 1-11/9-3/2-7/4-11/8 |
| | | | jove |
| | | | 30 |
| | |- |
| | | | 28 |
| | | | 0-301-502-1202-1503 |
| | | | 1-11/9-11/7-9/8-11/8 |
| | | | jove |
| | | | 30 |
| | |- |
| | | | 29 |
| | | | 0-301-602-1202-1503 |
| | | | 1-11/9-3/2-9/8-11/8 |
| | | | rastmic |
| | | | 30 |
| | |- |
| | | | 30 |
| | | | 0-301-903-1202-1503 |
| | | | 1-11/9-11/6-9/8-11/8 |
| | | | rastmic |
| | | | 30 |
| | |- |
| | | | 31 |
| | | | 0-502-903-1202-1503 |
| | | | 1-11/7-11/6-9/8-11/8 |
| | | | jove |
| | | | 30 |
| | |- |
| | | | 32 |
| | | | 0-602-903-1202-1503 |
| | | | 1-3/2-11/6-9/8-11/8 |
| | | | rastmic |
| | | | 30 |
| | |- |
| | | | 33 |
| | | | 0-301-1003-1202-1503 |
| | | | 1-11/9-7/4-9/8-11/8 |
| | | | jove |
| | | | 30 |
| | |- |
| | | | 34 |
| | | | 0-502-1003-1202-1503 |
| | | | 1-11/7-7/4-9/8-11/8 |
| | | | werckismic |
| | | | 30 |
| | |- |
| | | | 35 |
| | | | 0-602-1003-1202-1503 |
| | | | 1-3/2-7/4-9/8-11/8 |
| | | | otonal |
| | | | 30 |
| | |- |
| | | | 36 |
| | | | 0-202-501-702-1703 |
| | | | 1-20/11-10/9-10/7-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 37 |
| | | | 0-501-702-1003-1703 |
| | | | 1-10/9-10/7-7/4-5/4 |
| | | | werckismic |
| | | | 34 |
| | |- |
| | | | 38 |
| | | | 0-202-501-1103-1703 |
| | | | 1-20/11-10/9-5/3-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 39 |
| | | | 0-202-702-1103-1703 |
| | | | 1-20/11-10/7-5/3-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 40 |
| | | | 0-501-702-1103-1703 |
| | | | 1-10/9-10/7-5/3-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 41 |
| | | | 0-602-1003-1202-1703 |
| | | | 1-3/2-7/4-9/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |- |
| | | | 42 |
| | | | 0-702-1003-1202-1703 |
| | | | 1-10/7-7/4-9/8-5/4 |
| | | | werckismic |
| | | | 34 |
| | |- |
| | | | 43 |
| | | | 0-602-1003-1503-1703 |
| | | | 1-3/2-7/4-11/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |- |
| | | | 44 |
| | | | 0-602-1202-1503-1703 |
| | | | 1-3/2-9/8-11/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |- |
| | | | 45 |
| | | | 0-1003-1202-1503-1703 |
| | | | 1-7/4-9/8-11/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |} |
|
| |
|
| =Hexads= | | =Hexads= |
| || Number || Chord || Transversal || Type || Complexity ||
| |
| || 1 || 0-201-502-702-903-1202 || 1-9/7-11/7-10/7-11/6-9/8 || jove || 24 ||
| |
| || 2 || 0-301-502-702-903-1202 || 1-11/9-11/7-10/7-11/6-9/8 || jove || 24 ||
| |
| || 3 || 0-301-502-702-1003-1202 || 1-11/9-11/7-10/7-7/4-9/8 || jove || 24 ||
| |
| || 4 || 0-301-502-903-1202-1503 || 1-11/9-11/7-11/6-9/8-11/8 || jove || 30 ||
| |
| || 5 || 0-301-602-903-1202-1503 || 1-11/9-3/2-11/6-9/8-11/8 || rastmic || 30 ||
| |
| || 6 || 0-301-502-1003-1202-1503 || 1-11/9-11/7-7/4-9/8-11/8 || jove || 30 ||
| |
| || 7 || 0-301-602-1003-1202-1503 || 1-11/9-3/2-7/4-9/8-11/8 || jove || 30 ||
| |
| || 8 || 0-202-501-702-1103-1703 || 1-20/11-10/9-10/7-5/3-5/4 || utonal || 34 ||
| |
| || 9 || 0-602-1003-1202-1503-1703 || 1-3/2-7/4-9/8-11/8-5/4 || otonal || 34 ||
| |
| </pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Chords of harry</title></head><body>Below are listed the <a class="wiki_link" href="/Dyadic%20chord">dyadic chords</a> of 11-limit <a class="wiki_link" href="/Gravity%20family#Harry">harry temperament</a>. The essentially just chords are typed as otonal, utonal, or ambitonal. Those requiring tempering only by 540/539 are swetismic, by 441/440 werckismicmic, and by 243/242 rastmic. Those requiring tempering by any two of 540/539, 441/440 or 243/242 are labeled jove.<br />
| |
| <br />
| |
| The normal mapping for harry is har = [&lt;2 4 7 7 9|, &lt;0 -6 -17 -10 -15|]. From this we may derive a val v = har[1] - 100 har[2] = &lt;2 604 1707 1007 1509| which we may use to sort and normalize the chords of harry. Under &quot;Chord&quot; is listed the chord, normalized to start from zero, in the mapping by v. If we look at the highest, rightmost, element of the chord, divide that by 100, round, and multiply by 2, we get the Graham complexity of the chord. Redundantly for the sake of convenience, the Graham complexity is listed in the last column.<br />
| |
| <br />
| |
| Harry has MOS of size 14, 16, 30, 44, 58 and 72. It may be seen that 14 notes, and even more 16 notes, supply enough chords to be interesting. There is essentially no advantage in accuracy to optimizing for <a class="wiki_link" href="/Breed%20family#Jove, aka Wonder">jove temperament</a> rather than harry; in addition to what jove tempers out, harry tempers out 4000/3993. However, POTE tuning, for example, shrinks the three cents of this comma to -0.0827 cents, which is hardly worth worrying about. Hence harry is one way of exploring and organizing the chords of jove, which are therefore also listed below.<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Triads"></a><!-- ws:end:WikiTextHeadingRule:0 -->Triads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| <td>Complexity<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-201-401<br />
| |
| </td>
| |
| <td>1-9/7-7/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>8<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-202-401<br />
| |
| </td>
| |
| <td>1-20/11-7/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>8<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-202-501<br />
| |
| </td>
| |
| <td>1-20/11-10/9<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-301-501<br />
| |
| </td>
| |
| <td>1-11/9-10/9<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-201-502<br />
| |
| </td>
| |
| <td>1-9/7-11/7<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-301-502<br />
| |
| </td>
| |
| <td>1-11/9-11/7<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-201-602<br />
| |
| </td>
| |
| <td>1-9/7-3/2<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-301-602<br />
| |
| </td>
| |
| <td>1-11/9-3/2<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-401-602<br />
| |
| </td>
| |
| <td>1-7/6-3/2<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-201-702<br />
| |
| </td>
| |
| <td>1-9/7-10/7<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-202-702<br />
| |
| </td>
| |
| <td>1-20/11-10/7<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-301-702<br />
| |
| </td>
| |
| <td>1-11/9-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-401-702<br />
| |
| </td>
| |
| <td>1-7/6-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-501-702<br />
| |
| </td>
| |
| <td>1-10/9-10/7<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-502-702<br />
| |
| </td>
| |
| <td>1-11/7-10/7<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-201-903<br />
| |
| </td>
| |
| <td>1-9/7-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-301-903<br />
| |
| </td>
| |
| <td>1-11/9-11/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-401-903<br />
| |
| </td>
| |
| <td>1-7/6-11/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-502-903<br />
| |
| </td>
| |
| <td>1-11/7-11/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-602-903<br />
| |
| </td>
| |
| <td>1-3/2-11/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-702-903<br />
| |
| </td>
| |
| <td>1-10/7-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-301-1003<br />
| |
| </td>
| |
| <td>1-11/9-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-401-1003<br />
| |
| </td>
| |
| <td>1-7/6-7/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-501-1003<br />
| |
| </td>
| |
| <td>1-10/9-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-502-1003<br />
| |
| </td>
| |
| <td>1-11/7-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-602-1003<br />
| |
| </td>
| |
| <td>1-3/2-7/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-702-1003<br />
| |
| </td>
| |
| <td>1-10/7-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-202-1103<br />
| |
| </td>
| |
| <td>1-20/11-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-401-1103<br />
| |
| </td>
| |
| <td>1-7/6-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-501-1103<br />
| |
| </td>
| |
| <td>1-10/9-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-602-1103<br />
| |
| </td>
| |
| <td>1-3/2-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-702-1103<br />
| |
| </td>
| |
| <td>1-10/7-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-903-1103<br />
| |
| </td>
| |
| <td>1-11/6-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-201-1202<br />
| |
| </td>
| |
| <td>1-9/7-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-301-1202<br />
| |
| </td>
| |
| <td>1-11/9-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-502-1202<br />
| |
| </td>
| |
| <td>1-11/7-9/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-602-1202<br />
| |
| </td>
| |
| <td>1-3/2-9/8<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-702-1202<br />
| |
| </td>
| |
| <td>1-10/7-9/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-903-1202<br />
| |
| </td>
| |
| <td>1-11/6-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-1003-1202<br />
| |
| </td>
| |
| <td>1-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-301-1503<br />
| |
| </td>
| |
| <td>1-11/9-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-502-1503<br />
| |
| </td>
| |
| <td>1-11/7-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-602-1503<br />
| |
| </td>
| |
| <td>1-3/2-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-903-1503<br />
| |
| </td>
| |
| <td>1-11/6-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-1003-1503<br />
| |
| </td>
| |
| <td>1-7/4-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-1202-1503<br />
| |
| </td>
| |
| <td>1-9/8-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-202-1703<br />
| |
| </td>
| |
| <td>1-20/11-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-501-1703<br />
| |
| </td>
| |
| <td>1-10/9-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-602-1703<br />
| |
| </td>
| |
| <td>1-3/2-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-702-1703<br />
| |
| </td>
| |
| <td>1-10/7-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-1003-1703<br />
| |
| </td>
| |
| <td>1-7/4-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>0-1103-1703<br />
| |
| </td>
| |
| <td>1-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>0-1202-1703<br />
| |
| </td>
| |
| <td>1-9/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>0-1503-1703<br />
| |
| </td>
| |
| <td>1-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Tetrads"></a><!-- ws:end:WikiTextHeadingRule:2 -->Tetrads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| <td>Complexity<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-201-401-602<br />
| |
| </td>
| |
| <td>1-9/7-7/6-3/2<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-201-401-702<br />
| |
| </td>
| |
| <td>1-9/7-7/6-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-202-401-702<br />
| |
| </td>
| |
| <td>1-20/11-7/6-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-202-501-702<br />
| |
| </td>
| |
| <td>1-20/11-10/9-10/7<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-301-501-702<br />
| |
| </td>
| |
| <td>1-11/9-10/9-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-201-502-702<br />
| |
| </td>
| |
| <td>1-9/7-11/7-10/7<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-301-502-702<br />
| |
| </td>
| |
| <td>1-11/9-11/7-10/7<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>14<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-201-401-903<br />
| |
| </td>
| |
| <td>1-9/7-7/6-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-201-502-903<br />
| |
| </td>
| |
| <td>1-9/7-11/7-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-301-502-903<br />
| |
| </td>
| |
| <td>1-11/9-11/7-11/6<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-201-602-903<br />
| |
| </td>
| |
| <td>1-9/7-3/2-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-301-602-903<br />
| |
| </td>
| |
| <td>1-11/9-3/2-11/6<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-401-602-903<br />
| |
| </td>
| |
| <td>1-7/6-3/2-11/6<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-201-702-903<br />
| |
| </td>
| |
| <td>1-9/7-10/7-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-301-702-903<br />
| |
| </td>
| |
| <td>1-11/9-10/7-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-401-702-903<br />
| |
| </td>
| |
| <td>1-7/6-10/7-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-502-702-903<br />
| |
| </td>
| |
| <td>1-11/7-10/7-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-301-501-1003<br />
| |
| </td>
| |
| <td>1-11/9-10/9-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-301-502-1003<br />
| |
| </td>
| |
| <td>1-11/9-11/7-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-301-602-1003<br />
| |
| </td>
| |
| <td>1-11/9-3/2-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-401-602-1003<br />
| |
| </td>
| |
| <td>1-7/6-3/2-7/4<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-301-702-1003<br />
| |
| </td>
| |
| <td>1-11/9-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-401-702-1003<br />
| |
| </td>
| |
| <td>1-7/6-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-501-702-1003<br />
| |
| </td>
| |
| <td>1-10/9-10/7-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-502-702-1003<br />
| |
| </td>
| |
| <td>1-11/7-10/7-7/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-202-401-1103<br />
| |
| </td>
| |
| <td>1-20/11-7/6-5/3<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-202-501-1103<br />
| |
| </td>
| |
| <td>1-20/11-10/9-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-401-602-1103<br />
| |
| </td>
| |
| <td>1-7/6-3/2-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-202-702-1103<br />
| |
| </td>
| |
| <td>1-20/11-10/7-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-401-702-1103<br />
| |
| </td>
| |
| <td>1-7/6-10/7-5/3<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-501-702-1103<br />
| |
| </td>
| |
| <td>1-10/9-10/7-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-401-903-1103<br />
| |
| </td>
| |
| <td>1-7/6-11/6-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-602-903-1103<br />
| |
| </td>
| |
| <td>1-3/2-11/6-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-702-903-1103<br />
| |
| </td>
| |
| <td>1-10/7-11/6-5/3<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-201-502-1202<br />
| |
| </td>
| |
| <td>1-9/7-11/7-9/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-301-502-1202<br />
| |
| </td>
| |
| <td>1-11/9-11/7-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-201-602-1202<br />
| |
| </td>
| |
| <td>1-9/7-3/2-9/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-301-602-1202<br />
| |
| </td>
| |
| <td>1-11/9-3/2-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-201-702-1202<br />
| |
| </td>
| |
| <td>1-9/7-10/7-9/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-301-702-1202<br />
| |
| </td>
| |
| <td>1-11/9-10/7-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-502-702-1202<br />
| |
| </td>
| |
| <td>1-11/7-10/7-9/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-201-903-1202<br />
| |
| </td>
| |
| <td>1-9/7-11/6-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-301-903-1202<br />
| |
| </td>
| |
| <td>1-11/9-11/6-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-502-903-1202<br />
| |
| </td>
| |
| <td>1-11/7-11/6-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-602-903-1202<br />
| |
| </td>
| |
| <td>1-3/2-11/6-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>46<br />
| |
| </td>
| |
| <td>0-702-903-1202<br />
| |
| </td>
| |
| <td>1-10/7-11/6-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>0-301-1003-1202<br />
| |
| </td>
| |
| <td>1-11/9-7/4-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>48<br />
| |
| </td>
| |
| <td>0-502-1003-1202<br />
| |
| </td>
| |
| <td>1-11/7-7/4-9/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>0-602-1003-1202<br />
| |
| </td>
| |
| <td>1-3/2-7/4-9/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>50<br />
| |
| </td>
| |
| <td>0-702-1003-1202<br />
| |
| </td>
| |
| <td>1-10/7-7/4-9/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>0-301-502-1503<br />
| |
| </td>
| |
| <td>1-11/9-11/7-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>52<br />
| |
| </td>
| |
| <td>0-301-602-1503<br />
| |
| </td>
| |
| <td>1-11/9-3/2-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>0-301-903-1503<br />
| |
| </td>
| |
| <td>1-11/9-11/6-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>54<br />
| |
| </td>
| |
| <td>0-502-903-1503<br />
| |
| </td>
| |
| <td>1-11/7-11/6-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>0-602-903-1503<br />
| |
| </td>
| |
| <td>1-3/2-11/6-11/8<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>56<br />
| |
| </td>
| |
| <td>0-301-1003-1503<br />
| |
| </td>
| |
| <td>1-11/9-7/4-11/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>0-502-1003-1503<br />
| |
| </td>
| |
| <td>1-11/7-7/4-11/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>58<br />
| |
| </td>
| |
| <td>0-602-1003-1503<br />
| |
| </td>
| |
| <td>1-3/2-7/4-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>0-301-1202-1503<br />
| |
| </td>
| |
| <td>1-11/9-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>60<br />
| |
| </td>
| |
| <td>0-502-1202-1503<br />
| |
| </td>
| |
| <td>1-11/7-9/8-11/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>61<br />
| |
| </td>
| |
| <td>0-602-1202-1503<br />
| |
| </td>
| |
| <td>1-3/2-9/8-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>62<br />
| |
| </td>
| |
| <td>0-903-1202-1503<br />
| |
| </td>
| |
| <td>1-11/6-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63<br />
| |
| </td>
| |
| <td>0-1003-1202-1503<br />
| |
| </td>
| |
| <td>1-7/4-9/8-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>64<br />
| |
| </td>
| |
| <td>0-202-501-1703<br />
| |
| </td>
| |
| <td>1-20/11-10/9-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>65<br />
| |
| </td>
| |
| <td>0-202-702-1703<br />
| |
| </td>
| |
| <td>1-20/11-10/7-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>66<br />
| |
| </td>
| |
| <td>0-501-702-1703<br />
| |
| </td>
| |
| <td>1-10/9-10/7-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>67<br />
| |
| </td>
| |
| <td>0-501-1003-1703<br />
| |
| </td>
| |
| <td>1-10/9-7/4-5/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>68<br />
| |
| </td>
| |
| <td>0-602-1003-1703<br />
| |
| </td>
| |
| <td>1-3/2-7/4-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>69<br />
| |
| </td>
| |
| <td>0-702-1003-1703<br />
| |
| </td>
| |
| <td>1-10/7-7/4-5/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>70<br />
| |
| </td>
| |
| <td>0-202-1103-1703<br />
| |
| </td>
| |
| <td>1-20/11-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>71<br />
| |
| </td>
| |
| <td>0-501-1103-1703<br />
| |
| </td>
| |
| <td>1-10/9-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>72<br />
| |
| </td>
| |
| <td>0-602-1103-1703<br />
| |
| </td>
| |
| <td>1-3/2-5/3-5/4<br />
| |
| </td>
| |
| <td>ambitonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>73<br />
| |
| </td>
| |
| <td>0-702-1103-1703<br />
| |
| </td>
| |
| <td>1-10/7-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>74<br />
| |
| </td>
| |
| <td>0-602-1202-1703<br />
| |
| </td>
| |
| <td>1-3/2-9/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>75<br />
| |
| </td>
| |
| <td>0-702-1202-1703<br />
| |
| </td>
| |
| <td>1-10/7-9/8-5/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>76<br />
| |
| </td>
| |
| <td>0-1003-1202-1703<br />
| |
| </td>
| |
| <td>1-7/4-9/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>77<br />
| |
| </td>
| |
| <td>0-602-1503-1703<br />
| |
| </td>
| |
| <td>1-3/2-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>78<br />
| |
| </td>
| |
| <td>0-1003-1503-1703<br />
| |
| </td>
| |
| <td>1-7/4-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>79<br />
| |
| </td>
| |
| <td>0-1202-1503-1703<br />
| |
| </td>
| |
| <td>1-9/8-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Pentads"></a><!-- ws:end:WikiTextHeadingRule:4 -->Pentads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| <td>Complexity<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-201-401-602-903<br />
| |
| </td>
| |
| <td>1-9/7-7/6-3/2-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-201-401-702-903<br />
| |
| </td>
| |
| <td>1-9/7-7/6-10/7-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-201-502-702-903<br />
| |
| </td>
| |
| <td>1-9/7-11/7-10/7-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-301-502-702-903<br />
| |
| </td>
| |
| <td>1-11/9-11/7-10/7-11/6<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-301-501-702-1003<br />
| |
| </td>
| |
| <td>1-11/9-10/9-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-301-502-702-1003<br />
| |
| </td>
| |
| <td>1-11/9-11/7-10/7-7/4<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-202-401-702-1103<br />
| |
| </td>
| |
| <td>1-20/11-7/6-10/7-5/3<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-202-501-702-1103<br />
| |
| </td>
| |
| <td>1-20/11-10/9-10/7-5/3<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-401-602-903-1103<br />
| |
| </td>
| |
| <td>1-7/6-3/2-11/6-5/3<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>0-401-702-903-1103<br />
| |
| </td>
| |
| <td>1-7/6-10/7-11/6-5/3<br />
| |
| </td>
| |
| <td>swetismic<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>0-201-502-702-1202<br />
| |
| </td>
| |
| <td>1-9/7-11/7-10/7-9/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>0-301-502-702-1202<br />
| |
| </td>
| |
| <td>1-11/9-11/7-10/7-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>0-201-502-903-1202<br />
| |
| </td>
| |
| <td>1-9/7-11/7-11/6-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>0-301-502-903-1202<br />
| |
| </td>
| |
| <td>1-11/9-11/7-11/6-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>0-201-602-903-1202<br />
| |
| </td>
| |
| <td>1-9/7-3/2-11/6-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>0-301-602-903-1202<br />
| |
| </td>
| |
| <td>1-11/9-3/2-11/6-9/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>0-201-702-903-1202<br />
| |
| </td>
| |
| <td>1-9/7-10/7-11/6-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>0-301-702-903-1202<br />
| |
| </td>
| |
| <td>1-11/9-10/7-11/6-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>0-502-702-903-1202<br />
| |
| </td>
| |
| <td>1-11/7-10/7-11/6-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>0-301-502-1003-1202<br />
| |
| </td>
| |
| <td>1-11/9-11/7-7/4-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>0-301-602-1003-1202<br />
| |
| </td>
| |
| <td>1-11/9-3/2-7/4-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>22<br />
| |
| </td>
| |
| <td>0-301-702-1003-1202<br />
| |
| </td>
| |
| <td>1-11/9-10/7-7/4-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>0-502-702-1003-1202<br />
| |
| </td>
| |
| <td>1-11/7-10/7-7/4-9/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>24<br />
| |
| </td>
| |
| <td>0-301-502-903-1503<br />
| |
| </td>
| |
| <td>1-11/9-11/7-11/6-11/8<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>0-301-602-903-1503<br />
| |
| </td>
| |
| <td>1-11/9-3/2-11/6-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>26<br />
| |
| </td>
| |
| <td>0-301-502-1003-1503<br />
| |
| </td>
| |
| <td>1-11/9-11/7-7/4-11/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>0-301-602-1003-1503<br />
| |
| </td>
| |
| <td>1-11/9-3/2-7/4-11/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>28<br />
| |
| </td>
| |
| <td>0-301-502-1202-1503<br />
| |
| </td>
| |
| <td>1-11/9-11/7-9/8-11/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>0-301-602-1202-1503<br />
| |
| </td>
| |
| <td>1-11/9-3/2-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>30<br />
| |
| </td>
| |
| <td>0-301-903-1202-1503<br />
| |
| </td>
| |
| <td>1-11/9-11/6-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>0-502-903-1202-1503<br />
| |
| </td>
| |
| <td>1-11/7-11/6-9/8-11/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>32<br />
| |
| </td>
| |
| <td>0-602-903-1202-1503<br />
| |
| </td>
| |
| <td>1-3/2-11/6-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>0-301-1003-1202-1503<br />
| |
| </td>
| |
| <td>1-11/9-7/4-9/8-11/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>34<br />
| |
| </td>
| |
| <td>0-502-1003-1202-1503<br />
| |
| </td>
| |
| <td>1-11/7-7/4-9/8-11/8<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>0-602-1003-1202-1503<br />
| |
| </td>
| |
| <td>1-3/2-7/4-9/8-11/8<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>36<br />
| |
| </td>
| |
| <td>0-202-501-702-1703<br />
| |
| </td>
| |
| <td>1-20/11-10/9-10/7-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>0-501-702-1003-1703<br />
| |
| </td>
| |
| <td>1-10/9-10/7-7/4-5/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>38<br />
| |
| </td>
| |
| <td>0-202-501-1103-1703<br />
| |
| </td>
| |
| <td>1-20/11-10/9-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>0-202-702-1103-1703<br />
| |
| </td>
| |
| <td>1-20/11-10/7-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>40<br />
| |
| </td>
| |
| <td>0-501-702-1103-1703<br />
| |
| </td>
| |
| <td>1-10/9-10/7-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>0-602-1003-1202-1703<br />
| |
| </td>
| |
| <td>1-3/2-7/4-9/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>42<br />
| |
| </td>
| |
| <td>0-702-1003-1202-1703<br />
| |
| </td>
| |
| <td>1-10/7-7/4-9/8-5/4<br />
| |
| </td>
| |
| <td>werckismic<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>0-602-1003-1503-1703<br />
| |
| </td>
| |
| <td>1-3/2-7/4-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>44<br />
| |
| </td>
| |
| <td>0-602-1202-1503-1703<br />
| |
| </td>
| |
| <td>1-3/2-9/8-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>0-1003-1202-1503-1703<br />
| |
| </td>
| |
| <td>1-7/4-9/8-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Hexads"></a><!-- ws:end:WikiTextHeadingRule:6 -->Hexads</h1>
| |
|
| |
|
| |
| <table class="wiki_table">
| |
| <tr>
| |
| <td>Number<br />
| |
| </td>
| |
| <td>Chord<br />
| |
| </td>
| |
| <td>Transversal<br />
| |
| </td>
| |
| <td>Type<br />
| |
| </td>
| |
| <td>Complexity<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>0-201-502-702-903-1202<br />
| |
| </td>
| |
| <td>1-9/7-11/7-10/7-11/6-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>0-301-502-702-903-1202<br />
| |
| </td>
| |
| <td>1-11/9-11/7-10/7-11/6-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>0-301-502-702-1003-1202<br />
| |
| </td>
| |
| <td>1-11/9-11/7-10/7-7/4-9/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>24<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>0-301-502-903-1202-1503<br />
| |
| </td>
| |
| <td>1-11/9-11/7-11/6-9/8-11/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>0-301-602-903-1202-1503<br />
| |
| </td>
| |
| <td>1-11/9-3/2-11/6-9/8-11/8<br />
| |
| </td>
| |
| <td>rastmic<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>0-301-502-1003-1202-1503<br />
| |
| </td>
| |
| <td>1-11/9-11/7-7/4-9/8-11/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>0-301-602-1003-1202-1503<br />
| |
| </td>
| |
| <td>1-11/9-3/2-7/4-9/8-11/8<br />
| |
| </td>
| |
| <td>jove<br />
| |
| </td>
| |
| <td>30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>0-202-501-702-1103-1703<br />
| |
| </td>
| |
| <td>1-20/11-10/9-10/7-5/3-5/4<br />
| |
| </td>
| |
| <td>utonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>0-602-1003-1202-1503-1703<br />
| |
| </td>
| |
| <td>1-3/2-7/4-9/8-11/8-5/4<br />
| |
| </td>
| |
| <td>otonal<br />
| |
| </td>
| |
| <td>34<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| </body></html></pre></div>
| | {| class="wikitable" |
| | |- |
| | | | Number |
| | | | Chord |
| | | | Transversal |
| | | | Type |
| | | | Complexity |
| | |- |
| | | | 1 |
| | | | 0-201-502-702-903-1202 |
| | | | 1-9/7-11/7-10/7-11/6-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 2 |
| | | | 0-301-502-702-903-1202 |
| | | | 1-11/9-11/7-10/7-11/6-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 3 |
| | | | 0-301-502-702-1003-1202 |
| | | | 1-11/9-11/7-10/7-7/4-9/8 |
| | | | jove |
| | | | 24 |
| | |- |
| | | | 4 |
| | | | 0-301-502-903-1202-1503 |
| | | | 1-11/9-11/7-11/6-9/8-11/8 |
| | | | jove |
| | | | 30 |
| | |- |
| | | | 5 |
| | | | 0-301-602-903-1202-1503 |
| | | | 1-11/9-3/2-11/6-9/8-11/8 |
| | | | rastmic |
| | | | 30 |
| | |- |
| | | | 6 |
| | | | 0-301-502-1003-1202-1503 |
| | | | 1-11/9-11/7-7/4-9/8-11/8 |
| | | | jove |
| | | | 30 |
| | |- |
| | | | 7 |
| | | | 0-301-602-1003-1202-1503 |
| | | | 1-11/9-3/2-7/4-9/8-11/8 |
| | | | jove |
| | | | 30 |
| | |- |
| | | | 8 |
| | | | 0-202-501-702-1103-1703 |
| | | | 1-20/11-10/9-10/7-5/3-5/4 |
| | | | utonal |
| | | | 34 |
| | |- |
| | | | 9 |
| | | | 0-602-1003-1202-1503-1703 |
| | | | 1-3/2-7/4-9/8-11/8-5/4 |
| | | | otonal |
| | | | 34 |
| | |} |