Algebraic number: Difference between revisions
Wikispaces>xenwolf **Imported revision 179524827 - Original comment: ** |
Wikispaces>xenwolf **Imported revision 179525169 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2010-11-15 04: | : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2010-11-15 04:23:45 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>179525169</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">After the [[http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra|fundamental theorem of algebra]] each [[http://en.wikipedia.org/wiki/Polynomial|polynomial]] has | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">After the [[http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra|fundamental theorem of algebra]] each [[http://en.wikipedia.org/wiki/Polynomial|polynomial]] has a number of (complex) [[http://en.wikipedia.org/wiki/Root_of_a_function|roots]] equal to its degree. | ||
One method to find these roots is the [[http://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method|Durand–Kerner method]].</pre></div> | One method to find these roots is the [[http://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method|Durand–Kerner method]].</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Algebraic number</title></head><body>After the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra" rel="nofollow">fundamental theorem of algebra</a> each <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Polynomial" rel="nofollow">polynomial</a> has | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Algebraic number</title></head><body>After the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra" rel="nofollow">fundamental theorem of algebra</a> each <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Polynomial" rel="nofollow">polynomial</a> has a number of (complex) <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Root_of_a_function" rel="nofollow">roots</a> equal to its degree.<br /> | ||
<br /> | <br /> | ||
<br /> | <br /> | ||
One method to find these roots is the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method" rel="nofollow">Durand–Kerner method</a>.</body></html></pre></div> | One method to find these roots is the <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method" rel="nofollow">Durand–Kerner method</a>.</body></html></pre></div> |