Scale tree: Difference between revisions
Added todo |
Added scale tree construction and links to other pages |
||
Line 1: | Line 1: | ||
{{Todo| expand| comment=This page is a work-in-progress; feel free to edit as needed. | inline=1}}The '''scale tree''', | {{Todo| expand| comment=This page is a work-in-progress; feel free to edit as needed. | inline=1}}The '''scale tree''', usually referred to as the Stern-Brocot tree, is an infinite binary tree that lists every possible reduced positive rational number. The scale tree is commonly used in the context of [[MOS scale|MOS scales]] and [[regular temperament theory]]. | ||
== Construction == | |||
The easiest way of producing the scale tree is by finding the [[Mediant|mediants]], or freshman sums, of adjacent ratios, starting with 0/1, 1/0, and the mediant of 1/1 in between. The next level of the tree contains these ratios, as well as the next mediants of 1/2 and 2/1. This process can be repeated to produce a tree of any depth. | |||
{| class="wikitable" | |||
|+ | |||
!Level 1 | |||
!Level 2 | |||
!Level 3 | |||
!Level 4 | |||
|- | |||
|0/1 | |||
|0/1 | |||
|0/1 | |||
|0/1 | |||
|- | |||
| | |||
| | |||
| | |||
|1/4 | |||
|- | |||
| | |||
| | |||
|1/3 | |||
|1/3 | |||
|- | |||
| | |||
| | |||
| | |||
|2/5 | |||
|- | |||
| | |||
|1/2 | |||
|1/2 | |||
|1/2 | |||
|- | |||
| | |||
| | |||
| | |||
|3/5 | |||
|- | |||
| | |||
| | |||
|2/3 | |||
|2/3 | |||
|- | |||
| | |||
| | |||
| | |||
|3/4 | |||
|- | |||
|1/1 | |||
|1/1 | |||
|1/1 | |||
|1/1 | |||
|- | |||
| | |||
| | |||
| | |||
|4/3 | |||
|- | |||
| | |||
| | |||
|3/2 | |||
|3/2 | |||
|- | |||
| | |||
| | |||
| | |||
|5/3 | |||
|- | |||
| | |||
|2/1 | |||
|2/1 | |||
|2/1 | |||
|- | |||
| | |||
| | |||
| | |||
|5/2 | |||
|- | |||
| | |||
| | |||
|3/1 | |||
|3/1 | |||
|- | |||
| | |||
| | |||
| | |||
|4/1 | |||
|- | |||
|1/0 | |||
|1/0 | |||
|1/0 | |||
|1/0 | |||
|} | |||
If 0/1 and 1/0 are separated into their own level before 1/1 and duplicate ratios in successive levels are removed, the tree structure becomes more apparent. | |||
{| class="wikitable" | |||
!Level 0 | |||
!Level 1 | |||
!Level 2 | |||
!Level 3 | |||
!Level 4 | |||
|- | |||
|0/1 | |||
| | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|1/4 | |||
|- | |||
| | |||
| | |||
| | |||
|1/3 | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|2/5 | |||
|- | |||
| | |||
| | |||
|1/2 | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|3/5 | |||
|- | |||
| | |||
| | |||
| | |||
|2/3 | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|3/4 | |||
|- | |||
| | |||
|1/1 | |||
| | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|4/3 | |||
|- | |||
| | |||
| | |||
| | |||
|3/2 | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|5/3 | |||
|- | |||
| | |||
| | |||
|2/1 | |||
| | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|5/2 | |||
|- | |||
| | |||
| | |||
| | |||
|3/1 | |||
| | |||
|- | |||
| | |||
| | |||
| | |||
| | |||
|4/1 | |||
|- | |||
|1/0 | |||
| | |||
| | |||
| | |||
| | |||
|} | |||
The two starting ratios of 0/1 and 1/1 may be replaced with any other ratios to produce a new tree that is a subset of the original tree, where the mediant of those ratios represents the root. | |||
== External links == | |||
* Wikipedia page on the [[wikipedia:Stern–Brocot_tree|Stern-Brocot tree]] | |||
== See also == | |||
* [[MOS Scale Family Tree|MOS family tree]], a similar tree for organizing MOS scales by production rules. | |||
[[Category:Scale]] | [[Category:Scale]] | ||
[[Category:Stub]] | [[Category:Stub]] |