80edo: Difference between revisions

Wikispaces>guest
**Imported revision 361115194 - Original comment: scala says otherwise**
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
The ''80 equal temperament'', often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 [[cent|cent]]s. 80et is the first equal temperament that represents the [[19-limit|19-limit]] [[Tonality_diamond|tonality diamond]] [[consistent|consistent]]ly (it barely manages to do so).
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-08-30 19:51:04 UTC</tt>.<br>
: The original revision id was <tt>361115194</tt>.<br>
: The revision comment was: <tt>scala says otherwise</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //80 equal temperament//, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 [[xenharmonic/cent|cent]]s. 80et is the first equal temperament that represents the [[xenharmonic/19-limit|19-limit]] [[xenharmonic/tonality diamond|tonality diamond]] [[xenharmonic/consistent|consistent]]ly (it barely manages to do so).


80 et [[xenharmonic/tempering out|tempers out]] 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.
80 et [[tempering_out|tempers out]] 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.


80 supports a profusion of 19-limit (and lower) rank two temperaments which have mostly not been explored. We might mention:
80 supports a profusion of 19-limit (and lower) rank two temperaments which have mostly not been explored. We might mention:


31&amp;80 &lt;&lt;7 6 15 27 -24 -23 -20 ... ||
31&amp;80 &lt;&lt;7 6 15 27 -24 -23 -20 ... ||
72&amp;80 &lt;&lt;24 30 40 24 32 24 0 ... ||
72&amp;80 &lt;&lt;24 30 40 24 32 24 0 ... ||
34&amp;80 &lt;&lt;2 -4 -50 22 16 2 -40 ... ||
34&amp;80 &lt;&lt;2 -4 -50 22 16 2 -40 ... ||
46&amp;80 &lt;&lt;2 -4 30 22 16 2 40 ... ||
46&amp;80 &lt;&lt;2 -4 30 22 16 2 40 ... ||
29&amp;80 &lt;&lt;3 34 45 33 24 -37 20 ... ||
29&amp;80 &lt;&lt;3 34 45 33 24 -37 20 ... ||
12&amp;80 &lt;&lt;4 -8 -20 -36 32 4 0 ... ||
12&amp;80 &lt;&lt;4 -8 -20 -36 32 4 0 ... ||
22&amp;80 &lt;&lt;6 -10 12 -14 -32 6 -40 ... ||
22&amp;80 &lt;&lt;6 -10 12 -14 -32 6 -40 ... ||
58&amp;80 &lt;&lt;6 -10 12 -14 -32 6 40 ... ||
58&amp;80 &lt;&lt;6 -10 12 -14 -32 6 40 ... ||
41&amp;80 &lt;&lt;7 26 25 -3 -24 -33 20 ... ||
41&amp;80 &lt;&lt;7 26 25 -3 -24 -33 20 ... ||


In each case, the numbers joined by an ampersand represent 19-limit [[xenharmonic/Patent val|patent vals]] (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.
In each case, the numbers joined by an ampersand represent 19-limit [[Patent_val|patent vals]] (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.
 
=Intervals of 80edo=
||~ degrees ||~ cents ||~ ratios* ||
|| 0 || 0 || 1/1 ||
|| 1 || 15 || 64/63 ||
|| 2 || 30 || 81/80 ||
|| 3 || 45 || 34/33, 36/35 ||
|| 4 || 60 || 26/25, 28/27, 33/32, 35/34 ||
|| 5 || 75 || 22/21, 25/24, 27/26 ||
|| 6 || 90 || 19/18, 20/19, 21/20 ||
|| 7 || 105 || 16/15, 17/16, 18/17 ||
|| 8 || 120 || 14/13, 15/14 ||
|| 9 || 135 || 13/12 ||
|| 10 || 150 || 12/11 ||
|| 11 || 165 || 11/10 ||
|| 12 || 180 || 10/9, 21/19 ||
|| 13 || 195 || 19/17 ||
|| 14 || 210 || 9/8, 17/15 ||
|| 15 || 225 || 8/7 ||
|| 16 || 240 ||  ||
|| 17 || 255 || 15/13, 22/19 ||
|| 18 || 270 || 7/6 ||
|| 19 || 285 || 13/11, 20/17 ||
|| 20 || 300 || 19/16, 25/21 ||
|| 21 || 315 || 6/5 ||
|| 22 || 330 || 17/14 ||
|| 23 || 345 || 11/9 ||
|| 24 || 360 || 16/13, 21/17 ||
|| 25 || 375 ||  ||
|| 26 || 390 || 5/4 ||
|| 27 || 405 || 19/15, 24/19 ||
|| 28 || 420 || 14/11 ||
|| 29 || 435 || 9/7 ||
|| 30 || 450 || 13/10, 22/17 ||
|| 31 || 465 || 17/13 ||
|| 32 || 480 || 21/16, 25/19 ||
|| 33 || 495 || 4/3 ||
|| 34 || 510 ||  ||
|| 35 || 525 || 19/14 ||
|| 36 || 540 || 26/19 ||
|| 37 || 555 || 11/8 ||
|| 38 || 570 || 18/13 ||
|| 39 || 585 || 7/5 ||
|| 40 || 600 || 17/12, 24/17 ||
*based on treating 80edo as a [[19-limit]] temperament; other approaches are possible.</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;80edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;80 equal temperament&lt;/em&gt;, often abbreviated 80-tET, 80-EDO, or 80-ET, is the scale derived by dividing the octave into 80 equally-sized steps. Each step represents a frequency ratio of exactly 15 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s. 80et is the first equal temperament that represents the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/19-limit"&gt;19-limit&lt;/a&gt; &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/tonality%20diamond"&gt;tonality diamond&lt;/a&gt; &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/consistent"&gt;consistent&lt;/a&gt;ly (it barely manages to do so).&lt;br /&gt;
&lt;br /&gt;
80 et &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/tempering%20out"&gt;tempers out&lt;/a&gt; 136/135, 169/168, 176/175, 190/189, 221/220, 256/255, 286/285, 289/288, 325/324, 351/350, 352/351, 361/360, 364/363, 400/399, 456/455, 476/475, 540/539, 561/560, 595/594, 715/714, 936/935, 969/968, 1001/1000, 1275/1274, 1331/1330, 1445/1444, 1521/1520, 1540/1539 and 1729/1728, not to mention such important non-superparticular commas as 2048/2025, 4000/3969, 1728/1715 and 3136/3125.&lt;br /&gt;
&lt;br /&gt;
80 supports a profusion of 19-limit (and lower) rank two temperaments which have mostly not been explored. We might mention:&lt;br /&gt;
&lt;br /&gt;
31&amp;amp;80 &amp;lt;&amp;lt;7 6 15 27 -24 -23 -20 ... ||&lt;br /&gt;
72&amp;amp;80 &amp;lt;&amp;lt;24 30 40 24 32 24 0 ... ||&lt;br /&gt;
34&amp;amp;80 &amp;lt;&amp;lt;2 -4 -50 22 16 2 -40 ... ||&lt;br /&gt;
46&amp;amp;80 &amp;lt;&amp;lt;2 -4 30 22 16 2 40 ... ||&lt;br /&gt;
29&amp;amp;80 &amp;lt;&amp;lt;3 34 45 33 24 -37 20 ... ||&lt;br /&gt;
12&amp;amp;80 &amp;lt;&amp;lt;4 -8 -20 -36 32 4 0 ... ||&lt;br /&gt;
22&amp;amp;80 &amp;lt;&amp;lt;6 -10 12 -14 -32 6 -40 ... ||&lt;br /&gt;
58&amp;amp;80 &amp;lt;&amp;lt;6 -10 12 -14 -32 6 40 ... ||&lt;br /&gt;
41&amp;amp;80 &amp;lt;&amp;lt;7 26 25 -3 -24 -33 20 ... ||&lt;br /&gt;
&lt;br /&gt;
In each case, the numbers joined by an ampersand represent 19-limit &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Patent%20val"&gt;patent vals&lt;/a&gt; (meaning obtained by rounding to the nearest integer) and the first and most important part of the wedgie is given.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Intervals of 80edo"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Intervals of 80edo&lt;/h1&gt;


&lt;table class="wiki_table"&gt;
=Intervals of 80edo=
    &lt;tr&gt;
        &lt;th&gt;degrees&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;cents&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;ratios*&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1/1&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;64/63&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;81/80&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;34/33, 36/35&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;26/25, 28/27, 33/32, 35/34&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;75&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;22/21, 25/24, 27/26&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;90&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/18, 20/19, 21/20&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;105&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/15, 17/16, 18/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;120&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/13, 15/14&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;135&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/12&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;150&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/10&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;180&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10/9, 21/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;195&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;210&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/8, 17/15&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;225&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;240&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;255&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15/13, 22/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;270&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/6&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;285&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/11, 20/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;300&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/16, 25/21&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;315&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6/5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;330&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/14&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;345&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/9&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;360&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16/13, 21/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;375&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;390&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5/4&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;405&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/15, 24/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;420&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14/11&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;435&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9/7&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;450&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13/10, 22/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;465&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;480&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21/16, 25/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;495&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4/3&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;510&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;525&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19/14&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;540&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;26/19&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;555&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11/8&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;570&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;18/13&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;585&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7/5&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;600&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17/12, 24/17&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


*based on treating 80edo as a &lt;a class="wiki_link" href="/19-limit"&gt;19-limit&lt;/a&gt; temperament; other approaches are possible.&lt;/body&gt;&lt;/html&gt;</pre></div>
{| class="wikitable"
|-
! | degrees
! | cents
! | ratios*
|-
| | 0
| | 0
| | 1/1
|-
| | 1
| | 15
| | 64/63
|-
| | 2
| | 30
| | 81/80
|-
| | 3
| | 45
| | 34/33, 36/35
|-
| | 4
| | 60
| | 26/25, 28/27, 33/32, 35/34
|-
| | 5
| | 75
| | 22/21, 25/24, 27/26
|-
| | 6
| | 90
| | 19/18, 20/19, 21/20
|-
| | 7
| | 105
| | 16/15, 17/16, 18/17
|-
| | 8
| | 120
| | 14/13, 15/14
|-
| | 9
| | 135
| | 13/12
|-
| | 10
| | 150
| | 12/11
|-
| | 11
| | 165
| | 11/10
|-
| | 12
| | 180
| | 10/9, 21/19
|-
| | 13
| | 195
| | 19/17
|-
| | 14
| | 210
| | 9/8, 17/15
|-
| | 15
| | 225
| | 8/7
|-
| | 16
| | 240
| |
|-
| | 17
| | 255
| | 15/13, 22/19
|-
| | 18
| | 270
| | 7/6
|-
| | 19
| | 285
| | 13/11, 20/17
|-
| | 20
| | 300
| | 19/16, 25/21
|-
| | 21
| | 315
| | 6/5
|-
| | 22
| | 330
| | 17/14
|-
| | 23
| | 345
| | 11/9
|-
| | 24
| | 360
| | 16/13, 21/17
|-
| | 25
| | 375
| |
|-
| | 26
| | 390
| | 5/4
|-
| | 27
| | 405
| | 19/15, 24/19
|-
| | 28
| | 420
| | 14/11
|-
| | 29
| | 435
| | 9/7
|-
| | 30
| | 450
| | 13/10, 22/17
|-
| | 31
| | 465
| | 17/13
|-
| | 32
| | 480
| | 21/16, 25/19
|-
| | 33
| | 495
| | 4/3
|-
| | 34
| | 510
| |
|-
| | 35
| | 525
| | 19/14
|-
| | 36
| | 540
| | 26/19
|-
| | 37
| | 555
| | 11/8
|-
| | 38
| | 570
| | 18/13
|-
| | 39
| | 585
| | 7/5
|-
| | 40
| | 600
| | 17/12, 24/17
|}
*based on treating 80edo as a [[19-limit|19-limit]] temperament; other approaches are possible.
[[Category:19-limit]]
[[Category:21-limit]]
[[Category:edo]]