Temperament addition: Difference between revisions
Cmloegcmluin (talk | contribs) |
Cmloegcmluin (talk | contribs) mNo edit summary |
||
Line 745: | Line 745: | ||
====Introduction==== | ====Introduction==== | ||
The diagrams used for this explanation were inspired in part by [[Kite Giedraitis|Kite]]'s [[gencom]]s, and specifically how in his "twin squares" matrices — which have dimensions <math>d×d</math> — one can imagine shifting a bar up and down to change the boundary between vectors that form a basis for the commas and those that are a [[ | The diagrams used for this explanation were inspired in part by [[Kite Giedraitis|Kite]]'s [[gencom]]s, and specifically how in his "twin squares" matrices — which have dimensions <math>d×d</math> — one can imagine shifting a bar up and down to change the boundary between vectors that form a basis for the commas and those that are a [[generator preimage transversal]]). The count of the former is the nullity <math>n</math>, and the count of the latter is the rank <math>r</math>, and the shifting of the boundary bar between them with the total <math>d</math> vectors corresponds to the insight of the rank-nullity theorem, which states that <math>r + n=d</math>. And so this diagram's square grid has just the right amount of room to portray both the mapping and the comma basis for a given temperament (with the comma basis's vectors rotated 90 degrees to appear as rows, to match up with the rows of the mapping). | ||
So consider this first example of such a diagram: | So consider this first example of such a diagram: |