612edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 239965303 - Original comment: **
 
m Theory: Fix missing word
 
(49 intermediate revisions by 15 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox ET}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{ED intro}}
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-07-04 18:40:43 UTC</tt>.<br>
 
: The original revision id was <tt>239965303</tt>.<br>
== Theory ==
: The revision comment was: <tt></tt><br>
612edo is a very strong [[5-limit]] system, a fact noted by {{w|Isaac Newton}}<ref>[https://emusicology.org/index.php/EMR/article/view/7647/6030 Muzzulini, Daniel. 2021. "Isaac Newton's Microtonal Approach to Just Intonation". ''Empirical Musicology Review'' 15 (3-4):223-48. https://doi.org/10.18061/emr.v15i3-4.7647.]</ref>, {{w|Robert Holford Macdowall Bosanquet|R. H. M. Bosanquet}}{{citation needed}} and {{w|James Murray Barbour}}{{citation needed}}. As an equal temperament, it [[tempering out|tempers out]] the {{monzo| 485 -306 }} ([[sasktel comma]]) in the 3-limit, and in the 5-limit {{monzo| 1 -27 18 }} ([[ennealimma]]), {{monzo| -52 -17 34 }} ([[septendecima]]), {{monzo| -53 10 16 }} ([[kwazy comma]]), {{monzo| 54 -37 2 }} ([[monzisma]]), {{monzo| -107 47 14 }} (fortune comma), and {{monzo| 161 -84 -12 }} ([[atom]]). In the 7-limit it tempers out [[2401/2400]] and [[4375/4374]], so that it [[support]]s the [[ennealimmal]] temperament, and in fact provides the [[optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwazy comma. In the 11-limit, it tempers out [[3025/3024]] and [[9801/9800]], so that 612 supports the [[hemiennealimmal]] temperament. In the 13-limit, it tempers [[2200/2197]] and [[4096/4095]].
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
 
<h4>Original Wikitext content:</h4>
The 612edo step has been proposed as the logarithmic [[interval size measure]] '''skisma''' (or '''sk'''), since one step is nearly the same size as the [[schisma]] (32805/32768), 1/12 of a [[Pythagorean comma]] or 1/11 of a [[syntonic comma]]. Since 612 is divisible by {{EDOs| 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306 }}, it can readily express the step sizes of the 12, 17, 34, and 68 divisions. A table of intervals approximated by 612 can be found under [[Table of 612edo intervals]].
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The //612 equal division// divides the octave into 612 equal parts of 1.961 cents each. It is a very strong [[5-limit]] system, a fact noted by Bosanquet and Barbour. It tempers out the sasktel comma, |485 -306&gt;, in the 3-limit and in the 5-limit |-52 -17 34&gt;, the septendecima, |1 -27 18&gt;, the ennealimma, |-53 10 16&gt;, the kwazy comma, |54 -37 2&gt;, the monzisma, |-107 47 14&gt;, the fortune comma, and |161 -84 -12&gt;, the atom. In the 7-limit it tempers out 2401/2400 and 4375/4374, so that it supports [[Ragismic microtemperaments#Ennealimmal|ennealimmal temperament]], and in fact provides the [[optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwasy comma. In the 11-limit, it tempers out 3025/3024 and 9801/9800, so that 612 supports [[Ragismic microtemperaments#Ennealimmal|hemiennealimmal temperament]].</pre></div>
 
<h4>Original HTML content:</h4>
=== Prime harmonics ===
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;612edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;612 equal division&lt;/em&gt; divides the octave into 612 equal parts of 1.961 cents each. It is a very strong &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; system, a fact noted by Bosanquet and Barbour. It tempers out the sasktel comma, |485 -306&amp;gt;, in the 3-limit and  in the 5-limit |-52 -17 34&amp;gt;, the septendecima, |1 -27 18&amp;gt;, the ennealimma, |-53 10 16&amp;gt;, the kwazy comma, |54 -37 2&amp;gt;, the monzisma, |-107 47 14&amp;gt;, the fortune comma, and |161 -84 -12&amp;gt;, the atom. In the 7-limit it tempers out 2401/2400 and 4375/4374, so that it supports &lt;a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal"&gt;ennealimmal temperament&lt;/a&gt;, and in fact provides the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwasy comma. In the 11-limit, it tempers out 3025/3024 and 9801/9800, so that 612 supports &lt;a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal"&gt;hemiennealimmal temperament&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
{{Harmonics in equal|612}}
 
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3.5
| {{monzo| 1 -27 18 }}, {{monzo| -53 10 16 }}
| {{Mapping| 612 970 1421 }}
| +0.0044
| 0.0089
| 0.46
|-
| 2.3.5.7
| 2401/2400, 4375/4374, {{monzo| -53 10 16 }}
| {{Mapping| 612 970 1421 1718 }}
| +0.0210
| 0.0297
| 1.52
|-
| 2.3.5.7.11
| 2401/2400, 3025/3024, 4375/4374, {{monzo| 21 -6 -7 -2 3 }}
| {{Mapping| 612 970 1421 1718 2117 }}
| +0.0363
| 0.0406
| 2.07
|-
| 2.3.5.7.11.13
| 2200/2197, 2401/2400, 3025/3024, 4096/4095, 4375/4374
| {{Mapping| 612 970 1421 1718 2117 2265 }}
| +0.0010
| 0.0871
| 4.44
|-
| 2.3.5.7.11.13.19
| 1331/1330, 1540/1539, 2200/2197, 2376/2375, 2926/2925, 4096/4095
| {{Mapping| 612 970 1421 1718 2117 2265 2600 }}
| −0.0168
| 0.0917
| 4.68
|}
* 612et has a lower relative error than any previous equal temperaments in the 5-limit. Not until [[1171edo|1171]] do we find a better equal temperament in terms of either absolute error or relative error.
* It also has a lower absolute error in the 7- and 11-limit than any previous equal temperaments, and is only bettered by [[935edo|935]] and [[836edo|836]], respectively.
 
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>ratio*
! Temperaments
|-
| 1
| 113\612
| 221.57
| 8388608/7381125
| [[Fortune]]
|-
| 1
| 127\612
| 249.02
| {{monzo| -26 18 -1 }}
| [[Monzismic]]
|-
| 2
| 83\612
| 162.75
| 1125/1024
| [[Crazy]]
|-
| 4
| 194\612<br>(41\612)
| 380.39<br>(80.39)
| 81/65<br>(22/21)
| [[Quasithird]]
|-
| 9
| 133\612<br>(25\612)
| 315.69<br>(49.02)
| 6/5<br>(36/35)
| [[Ennealimmal]]
|-
| 12
| 124\612<br>(22\612)
| 243.137<br>(43.14)
| 3145728/2734375<br>(?)
| [[Magnesium]]
|-
| 12
| 254\612<br>(1\612)
| 498.04<br>(1.96)
| 4/3<br>(32805/32768)
| [[Atomic]]
|-
| 17
| 127\612<br>(17\612)
| 249.02<br>(33.33)
| {{monzo| -23 5 9 -2 }}<br>(100352/98415)
| [[Chlorine]]
|-
| 18
| 127\612<br>(9\612)
| 249.02<br>(17.65)
| 231/200<br>(99/98)
| [[Hemiennealimmal]] (11-limit)
|}
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct
 
== Music ==
; [[Eliora]]
* [https://www.youtube.com/watch?v=_DrkrgkiaAY ''Theme and Variations in Hemiennealimmal''] (2023)
 
== Notes ==
<references />
 
[[Category:Ennealimmal]]
[[Category:Hemiennealimmal]]
[[Category:Listen]]