328edo: Difference between revisions

Cmloegcmluin (talk | contribs)
I've asked for the clutter of pages of different forms for the words defactor and enfactor to be deleted, so now pages that linked to them need to be updated to use the remaining working link
ArrowHead294 (talk | contribs)
mNo edit summary
 
(9 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Infobox ET
{{Infobox ET}}
| Prime factorization = 2<sup>3</sup> × 41
{{ED intro}}
| Step size = 3.65854¢
| Fifth = 192\328 (702.44¢) (→ [[41edo|24\41]])
| Semitones = 32:24 (117.07¢ : 87.80¢)
| Consistency = 13
}}
The '''328 equal divisions of the octave''' ('''328edo'''), or the '''328(-tone) equal temperament''' ('''328tet''', '''328et''') when viewed from a [[regular temperament]] perspective, divides the octave into 328 [[equal]] parts of about 3.66 [[cent]]s each.


== Theory ==
== Theory ==
328edo is [[enfactoring|enfactored]] in the 5-limit, with the same tuning as [[164edo]]. It tempers out [[2401/2400]], [[3136/3125]], and [[6144/6125]] in the 7-limit, [[9801/9800]], [[16384/16335]] and [[19712/19683]] in the 11-limit, [[676/675]], [[1001/1000]], [[1716/1715]] and [[2080/2079]] in the 13-limit, [[936/935]], [[1156/1155]] and [[2601/2600]] in the 17-limit, so that it supports [[würschmidt]] and [[hemiwürschmidt]], and provides the [[optimal patent val]] for 7-limit hemiwürschmidt, 11- and 13-limit [[semihemiwür]], and 13-limit [[semiporwell]].  
328edo is [[enfactoring|enfactored]] in the [[5-limit]], with the same tuning as [[164edo]], but the approximation of higher [[harmonic]]s are much improved. It has a sharp tendency, with harmonics 3 through 17 all tuned sharp. The equal temperament [[tempering out|tempers out]] [[2401/2400]], [[3136/3125]], and [[6144/6125]] in the 7-limit, [[9801/9800]], [[16384/16335]] and [[19712/19683]] in the 11-limit, [[676/675]], [[1001/1000]], [[1716/1715]] and [[2080/2079]] in the 13-limit, [[936/935]], [[1156/1155]] and [[2601/2600]] in the 17-limit, so that it [[support]]s [[würschmidt]] and [[hemiwürschmidt]], and provides the [[optimal patent val]] for 7-limit hemiwürschmidt, 11- and 13-limit [[semihemiwür]], and 13-limit [[semiporwell]].  


328 factors into 2<sup>3</sup> × 41, with subset edos 2, 4, 8, 41, 82, and 164.
=== Prime harmonics ===
{{Harmonics in equal|328|intervals=prime|columns=11}}


=== Prime harmonics ===
=== Subsets and supersets ===
{{Primes in edo|328}}
Since 328 factors into {{Factorisation|328}}, 328edo has subset edos {{EDOs| 2, 4, 8, 41, 82, and 164 }}.


== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! rowspan="2" | Optimal<br />8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
Line 29: Line 25:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 3136/3125, 589824/588245
| 2401/2400, 3136/3125, 589824/588245
| [{{val| 328 520 762 921 }}]
| {{mapping| 328 520 762 921 }}
| -0.298
| −0.298
| 0.229
| 0.229
| 6.27
| 6.27
Line 36: Line 32:
| 2.3.5.7.11
| 2.3.5.7.11
| 2401/2400, 3136/3125, 9801/9800, 19712/19683
| 2401/2400, 3136/3125, 9801/9800, 19712/19683
| [{{val| 328 520 762 921 1135 }}]
| {{mapping| 328 520 762 921 1135 }}
| -0.303
| −0.303
| 0.205
| 0.205
| 5.61
| 5.61
Line 43: Line 39:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647
| 676/675, 1001/1000, 1716/1715, 3136/3125, 10648/10647
| [{{val| 328 520 762 921 1135 1214 }}]
| {{mapping| 328 520 762 921 1135 1214 }}
| -0.295
| −0.295
| 0.188
| 0.188
| 5.15
| 5.15
Line 50: Line 46:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125
| 676/675, 936/935, 1001/1000, 1156/1155, 1716/1715, 3136/3125
| [{{val| 328 520 762 921 1135 1214 1341 }}]
| {{mapping| 328 520 762 921 1135 1214 1341 }}
| -0.293
| −0.293
| 0.174
| 0.174
| 4.77
| 4.77
Line 57: Line 53:


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
Note: 5-limit temperaments supported by 164et are not listed.
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
! Periods<br>per octave
|-
! Generator<br>(reduced)
! Periods<br />per 8ve
! Cents<br>(reduced)
! Generator*
! Associated<br>ratio
! Cents*
! Associated<br />ratio*
! Temperaments
! Temperaments
|-
|-
Line 84: Line 83:
|-
|-
| 2
| 2
| 111\328<br>(53\328)
| 111\328<br />(53\328)
| 406.10<br>(193.90)
| 406.10<br />(193.90)
| 495/392<br>(28/25)
| 495/392<br />(28/25)
| [[Semihemiwürschmidt]]
| [[Semihemiwürschmidt]]
|-
|-
| 8
| 8
| 136\328<br>(13\328)
| 136\328<br />(13\328)
| 497.56<br>(47.56)
| 497.56<br />(47.56)
| 4/3<br>(36/35)
| 4/3<br />(36/35)
| [[Twilight]]
| [[Twilight]]
|-
|-
| 41
| 41
| 49\328<br>(1\328)
| 49\328<br />(1\328)
| 179.27<br>(3.66)
| 179.27<br />(3.66)
| 567/512<br>(352/351)
| 567/512<br />(352/351)
| [[Hemicounterpyth]]
| [[Hemicountercomp]]
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct


[[Category:Equal divisions of the octave]]
[[Category:Hemiwürschmidt]]
[[Category:Hemiwürschmidt]]
[[Category:Semiporwell]]
[[Category:Semiporwell]]