27/16: Difference between revisions

Wikispaces>spt3125
**Imported revision 513415592 - Original comment: **
BudjarnLambeth (talk | contribs)
m Add links
 
(15 intermediate revisions by 8 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox Interval
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| Name = Pythagorean major sixth
: This revision was by author [[User:spt3125|spt3125]] and made on <tt>2014-06-09 22:09:16 UTC</tt>.<br>
| Color name = w6, wa 6th
: The original revision id was <tt>513415592</tt>.<br>
| Sound = jid_27_16_pluck_adu_dr220.mp3
: The revision comment was: <tt></tt><br>
}}
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**27/16**
|-4 3&gt;
905.8650 cents
[[media type="file" key="jid_27_16_pluck_adu_dr220.mp3" width="240" height="20"]] [[file:xenharmonic/jid_27_16_pluck_adu_dr220.mp3|sound sample]]


The Pythagorean major sixth, 27/16, may be reached by stacking three perfect fifths ([[3_2|3/2]]) (and reducing by one octave).</pre></div>
The '''Pythagorean major sixth''', '''27/16''', may be reached by stacking three perfect fifths ([[3/2]]) and reducing by one [[octave]]. Compared to the more typical [[5/3]] - with which it is conflated in [[meantone]] - this interval is more [[dissonant]], with a [[harmonic entropy]] level roughly on par with that of [[6/5]]. While many musicians prefer to use 5/3 as the major sixth interval above the [[tonic]] in a [[diatonic]] context even in non-meantone settings, [[Aura]] is known to prefer this interval in those same contexts, though he still uses 5/3 as major sixth interval between certain non-tonic notes.
<h4>Original HTML content:</h4>
 
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;27_16&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;27/16&lt;/strong&gt;&lt;br /&gt;
== See also ==
|-4 3&amp;gt;&lt;br /&gt;
* [[32/27]] – its [[octave complement]]
905.8650 cents&lt;br /&gt;
* [[Gallery of just intervals]]
&lt;!-- ws:start:WikiTextMediaRule:0:&amp;lt;img src=&amp;quot;http://www.wikispaces.com/site/embedthumbnail/file-audio/jid_27_16_pluck_adu_dr220.mp3?h=20&amp;amp;w=240&amp;quot; class=&amp;quot;WikiMedia WikiMediaFile&amp;quot; id=&amp;quot;wikitext@@media@@type=&amp;amp;quot;file&amp;amp;quot; key=&amp;amp;quot;jid_27_16_pluck_adu_dr220.mp3&amp;amp;quot; width=&amp;amp;quot;240&amp;amp;quot; height=&amp;amp;quot;20&amp;amp;quot;&amp;quot; title=&amp;quot;Local Media File&amp;quot;height=&amp;quot;20&amp;quot; width=&amp;quot;240&amp;quot;/&amp;gt; --&gt;&lt;embed src="/s/mediaplayer.swf" pluginspage="http://www.macromedia.com/go/getflashplayer" type="application/x-shockwave-flash" quality="high" width="240" height="20" wmode="transparent" flashvars="file=http%253A%252F%252Fxenharmonic.wikispaces.com%252Ffile%252Fview%252Fjid_27_16_pluck_adu_dr220.mp3?file_extension=mp3&amp;autostart=false&amp;repeat=false&amp;showdigits=true&amp;showfsbutton=false&amp;width=240&amp;height=20"&gt;&lt;/embed&gt;&lt;!-- ws:end:WikiTextMediaRule:0 --&gt; &lt;a href="http://xenharmonic.wikispaces.com/file/view/jid_27_16_pluck_adu_dr220.mp3/513415270/jid_27_16_pluck_adu_dr220.mp3" onclick="ws.common.trackFileLink('http://xenharmonic.wikispaces.com/file/view/jid_27_16_pluck_adu_dr220.mp3/513415270/jid_27_16_pluck_adu_dr220.mp3');"&gt;sound sample&lt;/a&gt;&lt;br /&gt;
* [[Pythagorean tuning]]
&lt;br /&gt;
 
The Pythagorean major sixth, 27/16, may be reached by stacking three perfect fifths (&lt;a class="wiki_link" href="/3_2"&gt;3/2&lt;/a&gt;) (and reducing by one octave).&lt;/body&gt;&lt;/html&gt;</pre></div>
[[Category:Sixth]]
[[Category:Major sixth]]
 
{{todo| expand }}