102edo: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
 
(9 intermediate revisions by 7 users not shown)
Line 1: Line 1:
'''102edo''' is the [[Equal_division_of_the_octave|equal division of the octave]] into 102 steps of size 11.765 [[cent|cent]]s each. In the [[5-limit|5-limit]] it [[tempering_out|tempers out]] the same [[Comma|comma]]s (2048/2025, 15625/15552, 20000/19683) as [[34edo|34edo]]. In the [[7-limit|7-limit]] it tempers out 686/675 and 1029/1024; in the [[11-limit|11-limit]] 385/384, 441/440 and 4000/3993; in the [[13-limit|13-limit]] 91/90 and 169/168; in the [[17-limit|17-limit]] 136/135 and 154/153; and in the [[19-limit|19-limit]] 133/132 and 190/189. It is the [[Optimal_patent_val|optimal patent val]] for 13-limit [[Diaschismic_family#Echidnic|echidnic temperament]], and the rank five temperament tempering out 91/90.
{{Infobox ET}}
{{ED intro}}


===13-limit Echidnic===
== Theory ==
102edo is [[enfactoring|enfactored]] in the [[5-limit]], where it [[tempering out|tempers out]] the same [[comma]]s ([[2048/2025]], [[15625/15552]], [[20000/19683]]) as [[34edo]]. In the [[7-limit]] it tempers out [[686/675]] and [[1029/1024]]; in the [[11-limit]] [[385/384]], [[441/440]] and [[4000/3993]]; in the [[13-limit]] [[91/90]] and [[169/168]]; in the [[17-limit]] [[136/135]] and [[154/153]]; and in the [[19-limit]] [[133/132]] and [[190/189]]. It is the [[optimal patent val]] for 13-limit [[Diaschismic family #Echidnic|echidnic]] temperament, and the rank-5 temperament tempering out 91/90.


{| class="wikitable"
=== Odd harmonics ===
|-
{{Harmonics in equal|102}}
| | 2
 
| | 23.529
== Intervals ==
|-
{{Interval table}}
| | 4
 
| | 47.059
[[Category:Echidnic]]
|-
| | 7
| | 82.353
|-
| | 9
| | 105.882
|-
| | 11
| | 129.412
|-
| | 13
| | 152.941
|-
| | 16
| | 188.235
|-
| | 18
| | 211.765
|-
| | 20
| | 235.294
|-
| | 22
| | 258.824
|-
| | 24
| | 282.353
|-
| | 27
| | 317.647
|-
| | 29
| | 341.176
|-
| | 31
| | 364.706
|-
| | 33
| | 388.235
|-
| | 35
| | 411.765
|-
| | 38
| | 447.059
|-
| | 40
| | 470.588
|-
| | 42
| | 494.117
|-
| | 44
| | 517.647
|-
| | 47
| | 552.941
|-
| | 49
| | 576.471
|}
[[Category:echidnic]]
[[Category:Equal divisions of the octave]]