User:Contribution/Factor Limit: Difference between revisions

Contribution (talk | contribs)
No edit summary
Contribution (talk | contribs)
 
(12 intermediate revisions by the same user not shown)
Line 11: Line 11:
A positive rational number q belongs to the fmax-max-factor-limit, called the '''maximal factor limit''', for a given positive integer fmax if and only if the sum of the exponent absolutes of its factorization into primes is less than or equal to fmax.
A positive rational number q belongs to the fmax-max-factor-limit, called the '''maximal factor limit''', for a given positive integer fmax if and only if the sum of the exponent absolutes of its factorization into primes is less than or equal to fmax.


In other words, a positive rational number q belongs to the fmax-limit if and only if the sum of the exponent absolutes of its factorization into primes is right-bounded to fmax.
In other words, a positive rational number q belongs to the fmax-max-factor-limit if and only if the sum of the exponent absolutes of its factorization into primes is right-bounded to fmax.


===Examples===
===Examples===
Line 28: Line 28:
A positive rational number q belongs to the fmin-min-factor-limit, called the '''minimal factor limit''', for a given positive integer fmin if and only if the sum of the exponent absolutes of its factorization into primes is more than or equal to fmin.
A positive rational number q belongs to the fmin-min-factor-limit, called the '''minimal factor limit''', for a given positive integer fmin if and only if the sum of the exponent absolutes of its factorization into primes is more than or equal to fmin.


In other words, a positive rational number q belongs to the fmin-limit if and only if the sum of the exponent absolutes of its factorization into primes is left-bounded to fmin.
In other words, a positive rational number q belongs to the fmin-min-factor-limit if and only if the sum of the exponent absolutes of its factorization into primes is left-bounded to fmin.


===Examples===
===Examples===
Line 49: Line 49:
==Definition==
==Definition==


A positive rational number q belongs to the [minp;maxp;fmin;fmax]-limit, called the '''prime-bounded and factor-bounded limit''', if q ∈ pmin-min-prime-limit ∩ pmax-max-prime-limit ∩ fmin-min-factor-limit ∩ fmax-max-factor-limit.
A positive rational number q belongs to the (pmin;pmax;fmin;fmax)-limit, called the '''prime-bounded and factor-bounded limit''', if q ∈ pmin-min-prime-limit ∩ pmax-max-prime-limit ∩ fmin-min-factor-limit ∩ fmax-max-factor-limit.


===Examples===
===Examples===
* [5;7;0;3]-limit contains only 1/1, 5/1, 1/5, 5*5/1, 1/5*5, 5*5*5/1, 1/5*5*5, 7/1, 1/7, 5*7/1, 1/5*7, 7/5, 5/7, 7*7/1, 1/7*7, 5*5*7/1, 1/5*5*7, 7/5*5, 5*5/7, 5*7*7/1, 1/5*7*7, 7*7/5, 5/7*7, 7*7*7/1, 1/7*7*7
* (5;7;0;3)-limit contains only 1/1, 5/1, 1/5, 5*5/1, 1/5*5, 5*5*5/1, 1/5*5*5, 7/1, 1/7, 5*7/1, 1/5*7, 7/5, 5/7, 7*7/1, 1/7*7, 5*5*7/1, 1/5*5*7, 7/5*5, 5*5/7, 5*7*7/1, 1/5*7*7, 7*7/5, 5/7*7, 7*7*7/1, 1/7*7*7.


* [5;13;0;2]-limit contains only 1/1, 5/1, 1/5, 5*5/1, 1/5*5, 7/1, 1/7, 5*7/1, 1/5*7, 7/5, 5/7, 7*7/1, 1/7*7, 11/1, 1/11, 5*11/1, 1/5*11, 11/5, 5/11, 7*11/1, 1/7*11, 11/7, 7/11, 11*11/1, 1/11*11, 13/1, 1/13, 5*13/1, 1/5*13, 13/5, 5/13, 7*13/1, 1/7*13, 13/7, 7/13, 11*13/1, 1/11*13, 13/11, 11/13, 13*13/1, 1/13*13
* (5;13;0;2)-limit contains only 1/1, 5/1, 1/5, 5*5/1, 1/5*5, 7/1, 1/7, 5*7/1, 1/5*7, 7/5, 5/7, 7*7/1, 1/7*7, 11/1, 1/11, 5*11/1, 1/5*11, 11/5, 5/11, 7*11/1, 1/7*11, 11/7, 7/11, 11*11/1, 1/11*11, 13/1, 1/13, 5*13/1, 1/5*13, 13/5, 5/13, 7*13/1, 1/7*13, 13/7, 7/13, 11*13/1, 1/11*13, 13/11, 11/13, 13*13/1, 1/13*13.


* [5;31;0;1]-limit contains only 1/1, 5/1, 1/5, 7/1, 1/7, 11/1, 1/11, 13/1, 1/13, 17/1, 1/17, 19/1, 1/19, 23/1, 1/23, 29/1, 1/29, 31/1, 1/31
* (5;31;0;1)-limit contains only 1/1, 5/1, 1/5, 7/1, 1/7, 11/1, 1/11, 13/1, 1/13, 17/1, 1/17, 19/1, 1/19, 23/1, 1/23, 29/1, 1/29, 31/1, 1/31.
 
* (3;3;0;26)-limit contains only 1/1, 3/1, 1/3, 3<sup>2</sup>, 3<sup>-2</sup>, 3<sup>3</sup>, 3<sup>-3</sup>, 3<sup>4</sup>, 3<sup>-4</sup>, 3<sup>5</sup>, 3<sup>-5</sup>, 3<sup>6</sup>, 3<sup>-6</sup>, 3<sup>7</sup>, 3<sup>-7</sup>, 3<sup>8</sup>, 3<sup>-8</sup>, 3<sup>9</sup>, 3<sup>-9</sup>, 3<sup>10</sup>, 3<sup>-10</sup>, 3<sup>11</sup>, 3<sup>-11</sup>, 3<sup>12</sup>, 3<sup>-12</sup>, 3<sup>13</sup>, 3<sup>-13</sup>, 3<sup>14</sup>, 3<sup>-14</sup>, 3<sup>15</sup>, 3<sup>-15</sup>, 3<sup>16</sup>, 3<sup>-16</sup>, 3<sup>17</sup>, 3<sup>-17</sup>, 3<sup>18</sup>, 3<sup>-18</sup>, 3<sup>19</sup>, 3<sup>-19</sup>, 3<sup>20</sup>, 3<sup>-20</sup>, 3<sup>21</sup>, 3<sup>-21</sup>, 3<sup>22</sup>, 3<sup>-22</sup>, 3<sup>23</sup>, 3<sup>-23</sup>, 3<sup>24</sup>, 3<sup>-24</sup>, 3<sup>25</sup>, 3<sup>-25</sup>, 3<sup>26</sup>, 3<sup>-26</sup>.
 
* (2;2;0;+∞)-limit contains only 1/1, 2/1, 1/2, 2<sup>2</sup>, 2<sup>-2</sup>, 2<sup>3</sup>, 2<sup>-3</sup>, 2<sup>4</sup>, 2<sup>-4</sup>, 2<sup>5</sup>, 2<sup>-5</sup>, 2<sup>6</sup>, 2<sup>-6</sup>, 2<sup>7</sup>, 2<sup>-7</sup>, 2<sup>8</sup>, 2<sup>-8</sup>, 2<sup>9</sup>, 2<sup>-9</sup>, 2<sup>10</sup>, 2<sup>-10</sup>, 2<sup>11</sup>, 2<sup>-11</sup>, 2<sup>12</sup>, 2<sup>-12</sup>, 2<sup>13</sup>, 2<sup>-13</sup>, 2<sup>14</sup>, 2<sup>-14</sup>, 2<sup>15</sup>, 2<sup>-15</sup>, 2<sup>16</sup>, 2<sup>-16</sup>, 2<sup>17</sup>, 2<sup>-17</sup>, 2<sup>18</sup>, 2<sup>-18</sup>, 2<sup>19</sup>, 2<sup>-19</sup>, 2<sup>20</sup>, 2<sup>-20</sup>, etc...
 
* ((5;7;0;3)-limit ∪ (5;13;0;2)-limit ∪ (5;31;0;1)-limit) × (3;3;0;26)-limit × (2;2;0;+∞)-limit is represented by [[User:Contribution/(31-Limit_Factor_Gradient)_x_(26_Tritaves_Chain)_x_(Infinite_Octaves)|this table]].