11L 2s: Difference between revisions

Wikispaces>JosephRuhf
**Imported revision 566387013 - Original comment: **
m Fix a couple of typos; reorder comments in MOS tuning spectrum table to make it more intuitive for somebody else editing this page (should not affect normal page display)
 
(22 intermediate revisions by 11 users not shown)
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
{{Infobox MOS}}
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
{{MOS intro|Other Names=hendecoid; Wyschnegradsky's diatonicized chromatic scale}}
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-13 15:30:34 UTC</tt>.<br>
This scale is most notable for being used by [[Ivan Wyschnegradsky]], bearing the name '''diatonicized chromatic scale'''. Eliora has proposed the name '''hendecoid''' for its strong relationship to the number 11, as it's an 11+-limit scale and has generators that are close to [[11/8]]. Frostburn has proposed the name '''p-enhar balzano''', as a grandchild scale of 2L 7s.
: The original revision id was <tt>566387013</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">This is the mega chromatic scale of Heinz temperament. Its generator of 5\11edo to 6\13edo hits so close to 11/8 as to be able to be called nothing but that interval, making it an 11+-limit scale.
|| 5\11 ||  || 545.5455 ||
|| 26\57 ||  || 547.368 ||
|| 21\46 ||  || 547.826 ||
||  ||  || 548.439 ||
|| 16\35 ||  || 548.571 ||
||  ||  || 548.874 ||
||  || 43\94 || 548.936 ||
||  ||  || 548.997 ||
||  || 27\59 || 549.1525 ||
|| 11\24 ||  || 550 ||
||  ||  || 550.636 ||
||  || 28\61 || 550.82 ||
||  ||  || 550.965 ||
||  || 45\98 || 551.02 ||
||  ||  || 551.113 ||
|| 17\37 ||  || 551.351 ||
|| 23\50 ||  || 552 ||
|| 29\63 ||  || 552.381 ||
|| 6\13 ||  || 553.846 ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;11L 2s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;This is the mega chromatic scale of Heinz temperament. Its generator of 5\11edo to 6\13edo hits so close to 11/8 as to be able to be called nothing but that interval, making it an 11+-limit scale.&lt;br /&gt;


From a regular temperament theory perspective, this scale is notable for corresponding to the mega chromatic scale of [[Heinz]] temperament. Its generator of 5\11 to 6\13 hits so close to 11/8 as to be able to be called nothing but that interval, making it an 11+-limit scale. If just 11/8 is used as generator, the step ratio is around 1.509.


&lt;table class="wiki_table"&gt;
== Modes ==
    &lt;tr&gt;
{{MOS modes}}
        &lt;td&gt;5\11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;545.5455&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26\57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;547.368&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21\46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;547.826&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;548.439&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16\35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;548.571&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;548.874&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;43\94&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;548.936&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;548.997&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;27\59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;549.1525&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11\24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;550&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;550.636&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;28\61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;550.82&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;550.965&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;45\98&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;551.02&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;551.113&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;551.351&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23\50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;552&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29\63&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;552.381&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6\13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;553.846&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
== Intervals ==
{{MOS intervals}}
 
== Scale tree ==
{{MOS tuning spectrum
| 7/5 = ↕ [[Emka]]
| 8/5 = ↕ [[Freivald]]
| 4/1 = [[Heinz]]
}}
 
[[Category:13-tone scales]]