Edϕ: Difference between revisions

Cmloegcmluin (talk | contribs)
No edit summary
Fredg999 category edits (talk | contribs)
 
(16 intermediate revisions by 4 users not shown)
Line 1: Line 1:
Various equal divisions of the octave have close approximations of acoustic phi, or <span><math>φ</math></span>, ≈833.090296357¢.  
Various equal divisions of the octave have close approximations of [[acoustic phi]], or <math>φ</math>, ≈833.090296357¢.


If the <span><math>m^{th}</math></span> step of <span><math>n</math><span>ed2 is a close approximation of <span><math>φ</math></span>, the <span><math>n^{th}</math></span> step of <span><math>m</math><span>ed<span><math>φ</math></span> will be a close approximation of 2.
If the <math>m^{th}</math> step of <math>n</math><span>ed2 is a close approximation of <math>φ</math>, the <math>n^{th}</math> step of <math>m</math><span>ed<math>φ</math> will be a close approximation of 2.


For example, the 7th step of 10ed2 is 840¢, and the 10th step of 7ed<span><math>φ</math></span> is ≈1190.128995¢.  
For example, the 7th step of 10ed2 is 840¢, and the 10th step of 7ed<math>φ</math> is ≈1190.128995¢.  
As another example, the 9th step of 13ed2 is ≈830.7692308¢, and the 13th step of 9ed<span><math>φ</math></span> is ≈1203.35265¢.
As another example, the 9th step of 13ed2 is ≈830.7692308¢, and the 13th step of [[9edϕ|9ed<math>φ</math>]] is ≈1203.35265¢.


Such <span><math>m</math><span>ed<span><math>φ</math></span> are interesting as variants of their respective <span><math>n</math><span>ed<span><math>2</math><span>, introducing some combination tone powers.
Such <math>m</math><span>ed<math>φ</math> are interesting as variants of their respective <math>n</math><span>ed<math>2</math><span>, introducing some combination tone powers.


{| class="wikitable"
{| class="wikitable"
|+
|+
|
| rowspan="2" |'''scale step'''
| colspan="4" |'''10ed2'''
| colspan="4" |'''10ed2'''
| colspan="4" |'''7edφ or 10ed(<math>2^{\frac{10log_2{φ}}{7}} ≈ 1.988629015</math>)'''
| colspan="4" |'''7edφ or 10ed(<math>2^{\frac{10log_2{φ}}{7}} ≈ 1.988629015</math>)'''
|-
|-
|'''scale step'''
|'''frequency multiplier (definition)'''
|'''frequency multiplier (definition)'''
|'''10ed2 frequency multiplier (decimal)'''
|'''10ed2 frequency multiplier (decimal)'''
Line 124: Line 124:
|119.0128995
|119.0128995
|}
|}
{| class="wikitable"
|+
| rowspan="2" |'''scale step'''
| colspan="4" |'''13ed2'''
| colspan="4" |'''9edφ or 13ed(<math>2^{\frac{13log_2{φ}}{9}} ≈ 2.003876886</math>)'''
|-
|'''frequency multiplier (definition)'''
|'''10ed2 frequency multiplier (decimal)'''
|'''pitch (¢)'''
|'''Δ (¢)'''
|'''frequency multiplier (definition)'''
|'''frequency multiplier (decimal)'''
|'''pitch (¢)'''
|'''Δ (¢)'''
|-
|'''1'''
|<math>2^{\frac{1}{13}}</math>
|1.054766076
|92.30769231
|92.30769231
|<math>φ^{\frac{1}{9}}</math> or <math>≈2.003876886^{\frac{1}{13}}</math>
|1.054923213
|92.56558848
|92.56558848
|-
|'''2'''
|<math>2^{\frac{2}{13}}</math>
|1.112531476
|184.6153846
|92.30769231
|<math>φ^{\frac{2}{9}}</math> or <math>≈2.003876886^{\frac{2}{13}}</math>
|1.112862986
|185.131177
|92.56558848
|-
|'''3'''
|<math>2^{\frac{3}{13}}</math>
|1.17346046
|276.9230769
|92.30769231
|<math>φ^{\frac{3}{9}}</math> or <math>≈2.003876886^{\frac{3}{13}}</math>
|1.173984997
|277.6967655
|92.56558848
|-
|'''4'''
|<math>2^{\frac{4}{13}}</math>
|1.237726285
|369.2307692
|92.30769231
|<math>φ^{\frac{4}{9}}</math> or <math>≈2.003876886^{\frac{4}{13}}</math>
|1.238464025
|370.2623539
|92.56558848
|-
|'''5'''
|<math>2^{\frac{5}{13}}</math>
|1.305511698
|461.5384615
|92.30769231
|<math>φ^{\frac{5}{9}}</math> or <math>≈2.003876886^{\frac{5}{13}}</math>
|1.306484449
|462.8279424
|92.56558848
|-
|'''6'''
|<math>2^{\frac{6}{13}}</math>
|1.377009451
|553.8461538
|92.30769231
|<math>φ^{\frac{6}{9}}</math> or <math>≈2.003876886^{\frac{6}{13}}</math>
|1.378240772
|555.3935309
|92.56558848
|-
|'''7'''
|<math>2^{\frac{7}{13}}</math>
|1.452422856
|646.1538462
|92.30769231
|<math>φ^{\frac{7}{9}}</math> or <math>≈2.003876886^{\frac{7}{13}}</math>
|1.453938184
|647.9591194
|92.56558848
|-
|'''8'''
|<math>2^{\frac{8}{13}}</math>
|1.531966357
|738.4615385
|92.30769231
|<math>φ^{\frac{8}{9}}</math> or <math>≈2.003876886^{\frac{8}{13}}</math>
|1.533793141
|740.5247079
|92.56558848
|-
|'''9'''
|<math>2^{\frac{9}{13}}</math>
|1.615866144
|830.7692308
|92.30769231
|<math>φ^{\frac{9}{9}}</math> or <math>≈2.003876886^{\frac{9}{13}}</math>
|1.618033989
|833.0902964
|92.56558848
|-
|'''10'''
|<math>2^{\frac{10}{13}}</math>
|1.704360793
|923.0769231
|92.30769231
|<math>φ^{\frac{10}{9}}</math> or <math>≈2.003876886^{\frac{10}{13}}</math>
|1.706901614
|925.6558848
|92.56558848
|-
|11
|<math>2^{\frac{11}{13}}</math>
|1.797701946
|1015.384615
|92.30769231
|<math>φ^{\frac{11}{9}}</math> or <math>≈2.003876886^{\frac{11}{13}}</math>
|1.800650136
|1018.221473
|92.56558848
|-
|12
|<math>2^{\frac{12}{13}}</math>
|1.896155029
|1107.692308
|92.30769231
|<math>φ^{\frac{12}{9}}</math> or <math>≈2.003876886^{\frac{12}{13}}</math>
|1.899547627
|1110.787062
|92.56558848
|-
|13
|<math>2^{\frac{13}{13}}</math>
|2
|1200
|92.30769231
|<math>φ^{\frac{13}{9}}</math> or <math>≈2.003876886^{\frac{13}{13}}</math>
|2.003876886
|1203.35265
|92.56558848
|}
A couple such scales can be found in the [[Scala Scale Archive|Huygens-Fokker Foundation's Scala scale archive]]. They were described by Walter O'Connell in his 1993 paper [http://anaphoria.com/oconnell.pdf The Tonality of the Golden Section]. The 18th root of φ scale doubles the resolution of the 9th root scale featured above, as so as the 9th root of φ scale is similar to 13ed2 the 18th root of φ scale is similar to 26edo (which does a notably better job of approximating 3-, 5-, and 7- limit harmonies).
cet33.scl                      25  25th root of phi, Walter O´Connell (1993)
cet46.scl                      18  18th root of phi, Walter O´Connell (1993)
== See also ==
* [[EDe]]
* [[Acoustic pi]]
* [[User:Eliora/Phi to the phi]]
[[Category:Golden ratio]]
{{todo|inline=1|improve synopsis|improve readability}}