Minimal consistent EDOs: Difference between revisions
Wikispaces>FREEZE No edit summary |
ArrowHead294 (talk | contribs) mNo edit summary |
||
(66 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
An [[ | {{Idiosyncratic terms}} | ||
An [[edo]] ''N'' is ''[[consistent]]'' with respect to the [[Odd limit|''q''-odd-limit]] if the closest approximations of the odd harmonics of the q-odd-limit in that edo also give the closest approximations of all the differences between these odd harmonics. It is ''[[distinctly consistent]]'' if every one of those closest approximations is a distinct value, and ''purely consistent''{{idiosyncratic}} if its [[relative interval error|relative errors]] on odd harmonics up to and including ''q'' never exceed 25%. Below is a table of the smallest consistent, and the smallest distinctly consistent, edo for every odd number up to 135. Odd limits of {{nowrap|2<sup>''n''</sup> − 1}} are '''highlighted'''. | |||
{| class="wikitable" | <onlyinclude>{| class="wikitable center-all" | ||
|+ style="font-size: 105%;" | Smallest consistent EDOs per odd limit | |||
|- | |- | ||
| | | ! Odd<br>limit !! Smallest<br>consistent edo* !! Smallest distinctly<br>consistent edo !! Smallest purely<br>consistent edo* !! Smallest edo<br>consistent to<br>[[Consistency #Generalization|distance 2]]* !! Smallest edo<br>distinctly consistent<br>to distance 2 | ||
| | | |- style="font-weight: bold; background-color: #dddddd;" | ||
| | | | 1 || 1 || 1 || 1 || 1 || 1 | ||
|- style="font-weight: bold; background-color: #dddddd;" | |||
| 3 || 1 || 3 || 2 || 2 || 3 | |||
|- | |- | ||
| | | | 5 || 3 || 9 || 3 || 3 || 12 | ||
| | | |- style="font-weight: bold; background-color: #dddddd;" | ||
| | | | 7 || 4 || 27 || 10 || 31 || 31 | ||
|- | |- | ||
| | | | 9 || 5 || 41 || 41 || 41 || 41 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 11 || 22 || 58 || 41 || 72 || 72 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 13 || 26 || 87 || 46 || 270 || 270 | ||
| | | |- style="font-weight: bold; background-color: #dddddd;" | ||
| | | | 15 || 29 || 111 || 87 || 494 || 494 | ||
|- | |- | ||
| | | | 17 || 58 || 149 || 311 || 3395 || 3395 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 19 || 80 || 217 || 311 || 8539 || 8539 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 21 || 94 || 282 || 311 || 8539 || 8539 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 23 || 94 || 282 || 311 || 16808 || 16808 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 25 || 282 || 388 || 311 || 16808 || 16808 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 27 || 282 || 388 || 311 || 16808 || 16808 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 29 || 282 || 1323 || 311 || 16808 || 16808 | ||
| | | |- style="font-weight: bold; background-color: #dddddd;" | ||
| | | | 31 || 311 || 1600 || 311 || 16808 || 16808 | ||
|- | |- | ||
| | | | 33 || 311 || 1600 || 311 || 16808 || 16808 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 35 || 311 || 1600 || 311 || 16808 || 16808 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 37 || 311 || 1600 || 311 || 324296 || 324296 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 39 || 311 || 2554 || 311 || 2398629 || 2398629 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 41 || 311 || 2554 || 311 || 19164767 || 19164767 | ||
| | 311 | |||
| | | |||
|- | |- | ||
| | | | 43 || 17461 || 17461 || 20567 || 19735901 || 19735901 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 45 || 17461 || 17461 || 20567 || 19735901 || 19735901 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 47 || 20567 || 20567 || 20567 || 152797015 || 152797015 | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 49 || 20567 || 20567 || 459944 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 51 || 20567 || 20567 || 459944 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 53 || 20567 || 20567 || 1705229 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 55 || 20567 || 20567 || 1705229 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 57 || 20567 || 20567 || 1705229 || || | ||
| | 20567 | |||
| | | |||
|- | |- | ||
| | | | 59 || 253389 || 253389 || 3159811 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 61 || 625534 || 625534 || 3159811 || || | ||
| | | |- style="font-weight: bold; background-color: #dddddd;" | ||
| | | | 63 || 625534 || 625534 || 3159811 || || | ||
|- | |- | ||
| | | | 65 || 625534 || 625534 || 3159811 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 67 || 625534 || 625534 || 7317929 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 69 || 759630 || 759630 || 8595351 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 71 || 759630 || 759630 || 8595351 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 73 || 759630 || 759630 || 27783092 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 75 || 2157429 || 2157429 || 34531581 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 77 || 2157429 || 2157429 || 34531581 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 79 || 2901533 || 2901533 || 50203972 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 81 || 2901533 || 2901533 || 50203972 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 83 || 2901533 || 2901533 || 50203972 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 85 || 2901533 || 2901533 || 50203972 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 87 || 2901533 || 2901533 || 50203972 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 89 || 2901533 || 2901533 || 50203972 || || | ||
| | | |||
| | | |||
|- | |- | ||
| | | | 91 || 2901533 || 2901533 || 50203972 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 93 || 2901533 || 2901533 || 50203972 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 95 || 2901533 || 2901533 || 50203972 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 97 || 2901533 || 2901533 || 1297643131 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 99 || 2901533 || 2901533 || 1297643131 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 101 || 2901533 || 2901533 || 3888109922 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 103 || 2901533 || 2901533 || 3888109922 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 105 || 2901533 || 2901533 || 3888109922 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 107 || 2901533 || 2901533 || 13805152233 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 109 || 2901533 || 2901533 || 27218556026 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 111 || 2901533 || 2901533 || 27218556026 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 113 || 2901533 || 2901533 || 27218556026 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 115 || 2901533 || 2901533 || 27218556026 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 117 || 2901533 || 2901533 || 27218556026 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 119 || 2901533 || 2901533 || 42586208631 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 121 || 2901533 || 2901533 || 42586208631 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 123 || 2901533 || 2901533 || 42586208631 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 125 || 2901533 || 2901533 || 42586208631 || || | ||
| | 2901533 | |- style="font-weight: bold; background-color: #dddddd;" | ||
| | 2901533 | | 127 || 2901533 || 2901533 || 42586208631 || || | ||
|- | |- | ||
| | | | 129 || 2901533 || 2901533 || 42586208631 || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 131 || 2901533 || 2901533 || 93678217813** || || | ||
| | 2901533 | |||
| | | |||
|- | |- | ||
| | | | 133 || 70910024 || 70910024 || 93678217813 || || | ||
| | | |||
| | | |||
|- | |- | ||
| 135 || 70910024 || 70910024 || 93678217813 || || | |||
| | 70910024 | |||
| | 70910024 | |||
| | | |||
| | | |||
| | | |||
|} | |} | ||
<nowiki />* Apart from 0edo | |||
<nowiki />** Purely consistent to the 137-odd-limit</onlyinclude> | |||
The last entry, 70910024edo, is consistent up to the 135-odd-limit. The next edo is [[5407372813edo|5407372813]], reported to be consistent to the 155-odd-limit. | |||
[ | |||
== OEIS integer sequences links == | |||
* {{OEIS|A116474|Equal divisions of the octave with progressively increasing consistency levels}} | |||
* {{OEIS|A116475|Equal divisions of the octave with progressively increasing consistency limits and distinct approximations for all the ratios in the tonality diamond of that limit}} | |||
* {{OEIS|A117577|Equal divisions of the octave with nondecreasing consistency levels.}} | |||
* {{OEIS|A117578|Equal divisions of the octave with nondecreasing consistency limits and distinct approximations for all the ratios in the tonality diamond of that limit}} | |||
[ | == See also == | ||
* [[Consistency limits of small EDOs]] | |||
* {{u|ArrowHead294|Purely consistent EDOs by odd limit}} | |||
[ | [[Category:Mapping]] | ||
[[Category:Consistency]] | |||
[[Category:Odd limit]] |