|
|
(70 intermediate revisions by 14 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | {{Idiosyncratic terms}} |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| | An [[edo]] ''N'' is ''[[consistent]]'' with respect to the [[Odd limit|''q''-odd-limit]] if the closest approximations of the odd harmonics of the q-odd-limit in that edo also give the closest approximations of all the differences between these odd harmonics. It is ''[[distinctly consistent]]'' if every one of those closest approximations is a distinct value, and ''purely consistent''{{idiosyncratic}} if its [[relative interval error|relative errors]] on odd harmonics up to and including ''q'' never exceed 25%. Below is a table of the smallest consistent, and the smallest distinctly consistent, edo for every odd number up to 135. Odd limits of {{nowrap|2<sup>''n''</sup> − 1}} are '''highlighted'''. |
| : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2017-01-07 11:24:07 UTC</tt>.<br>
| |
| : The original revision id was <tt>603231544</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">An [[edo]] N is //consistent// with respect to a set of rational numbers s if the [[patent val]] mapping of every element of s is the nearest N-edo approximation. It is //uniquely consistent// if every element of s is mapped to a unique value. If the set s is the q [[odd limit]], we say N is q-limit consistent and q-limit uniquely consistent, respectively. Below is a table of the least consistent, and least uniquely consistent, edo for every odd number up to 135.
| |
|
| |
|
| || Odd limit || Smallest consistent || Smallest uniquely consistent || | | <onlyinclude>{| class="wikitable center-all" |
| || 1 || 1 || 1 || | | |+ style="font-size: 105%;" | Smallest consistent EDOs per odd limit |
| || 3 || 1 || 3 || | | |- |
| || 5 || 3 || 9 || | | ! Odd<br>limit !! Smallest<br>consistent edo* !! Smallest distinctly<br>consistent edo !! Smallest purely<br>consistent edo* !! Smallest edo<br>consistent to<br>[[Consistency #Generalization|distance 2]]* !! Smallest edo<br>distinctly consistent<br>to distance 2 |
| || 7 || 4 || 27 || | | |- style="font-weight: bold; background-color: #dddddd;" |
| || 9 || 5 || 41 || | | | 1 || 1 || 1 || 1 || 1 || 1 |
| || 11 || 22 || 58 || | | |- style="font-weight: bold; background-color: #dddddd;" |
| || 13 || 26 || 87 || | | | 3 || 1 || 3 || 2 || 2 || 3 |
| || 15 || 29 || 111 || | | |- |
| || 17 || 58 || 149 || | | | 5 || 3 || 9 || 3 || 3 || 12 |
| || 19 || 80 || 217 || | | |- style="font-weight: bold; background-color: #dddddd;" |
| || 21 || 94 || 282 || | | | 7 || 4 || 27 || 10 || 31 || 31 |
| || 23 || 94 || 282 || | | |- |
| || 25 || 282 || 388 || | | | 9 || 5 || 41 || 41 || 41 || 41 |
| || 27 || 282 || 388 || | | |- |
| || 29 || 282 || 1323 || | | | 11 || 22 || 58 || 41 || 72 || 72 |
| || 31 || 311 || 1600 || | | |- |
| || 33 || 311 || 1600 || | | | 13 || 26 || 87 || 46 || 270 || 270 |
| || 35 || 311 || 1600 || | | |- style="font-weight: bold; background-color: #dddddd;" |
| || 37 || 311 || 1600 || | | | 15 || 29 || 111 || 87 || 494 || 494 |
| || 39 || 311 || 2554 || | | |- |
| || 41 || 311 || 2554 || | | | 17 || 58 || 149 || 311 || 3395 || 3395 |
| || 43 ||17461 || 17461 || | | |- |
| || 45 || 17461 || 17461 || | | | 19 || 80 || 217 || 311 || 8539 || 8539 |
| || 47 || 20567 || 20567 || | | |- |
| || 49 || 20567 || 20567 || | | | 21 || 94 || 282 || 311 || 8539 || 8539 |
| || 51 || 20567 || 20567 || | | |- |
| || 53 || 20567 || 20567 || | | | 23 || 94 || 282 || 311 || 16808 || 16808 |
| || 55 || 20567 || 20567 || | | |- |
| || 57 || 20567 || 20567 || | | | 25 || 282 || 388 || 311 || 16808 || 16808 |
| || 59 || 253389 || 253389 || | | |- |
| || 61 || 625534 || 625534 || | | | 27 || 282 || 388 || 311 || 16808 || 16808 |
| || 63 || 625534 || 625534 || | | |- |
| || 65 || 625534 || 625534 || | | | 29 || 282 || 1323 || 311 || 16808 || 16808 |
| || 67 || 625534 || 625534 || | | |- style="font-weight: bold; background-color: #dddddd;" |
| || 69 || 759630 || 759630 || | | | 31 || 311 || 1600 || 311 || 16808 || 16808 |
| || 71 || 759630 || 759630 || | | |- |
| || 73 || 759630 || 759630 || | | | 33 || 311 || 1600 || 311 || 16808 || 16808 |
| || 75 || 2157429 || 2157429 || | | |- |
| || 77 || 2157429 || 2157429 || | | | 35 || 311 || 1600 || 311 || 16808 || 16808 |
| || 79 || 2901533 || 2901533 || | | |- |
| || 81 || 2901533 || 2901533 || | | | 37 || 311 || 1600 || 311 || 324296 || 324296 |
| || 83 || 2901533 || 2901533 || | | |- |
| || 85 || 2901533 || 2901533 || | | | 39 || 311 || 2554 || 311 || 2398629 || 2398629 |
| || 87 || 2901533 || 2901533 || | | |- |
| || 91 || 2901533 || 2901533 || | | | 41 || 311 || 2554 || 311 || 19164767 || 19164767 |
| || 93 || 2901533 || 2901533 || | | |- |
| || 95 || 2901533 || 2901533 || | | | 43 || 17461 || 17461 || 20567 || 19735901 || 19735901 |
| || 97 || 2901533 || 2901533 || | | |- |
| || 99 || 2901533 || 2901533 || | | | 45 || 17461 || 17461 || 20567 || 19735901 || 19735901 |
| || 101 || 2901533 || 2901533 || | | |- |
| || 103 || 2901533 || 2901533 || | | | 47 || 20567 || 20567 || 20567 || 152797015 || 152797015 |
| || 105 || 2901533 || 2901533 || | | |- |
| || 107 || 2901533 || 2901533 || | | | 49 || 20567 || 20567 || 459944 || || |
| || 109 || 2901533 || 2901533 || | | |- |
| || 111 || 2901533 || 2901533 || | | | 51 || 20567 || 20567 || 459944 || || |
| || 113 || 2901533 || 2901533 || | | |- |
| || 115 || 2901533 || 2901533 || | | | 53 || 20567 || 20567 || 1705229 || || |
| || 117 || 2901533 || 2901533 || | | |- |
| || 119 || 2901533 || 2901533 || | | | 55 || 20567 || 20567 || 1705229 || || |
| || 121 || 2901533 || 2901533 || | | |- |
| || 123 || 2901533 || 2901533 || | | | 57 || 20567 || 20567 || 1705229 || || |
| || 125 || 2901533 || 2901533 || | | |- |
| || 127 || 2901533 || 2901533 || | | | 59 || 253389 || 253389 || 3159811 || || |
| || 129 || 2901533 || 2901533 || | | |- |
| || 131 || 2901533 || 2901533 || | | | 61 || 625534 || 625534 || 3159811 || || |
| || 133 || 70910024.|| 70910024.|| | | |- style="font-weight: bold; background-color: #dddddd;" |
| || 135 || 70910024.|| 70910024.|| | | | 63 || 625534 || 625534 || 3159811 || || |
| | |- |
| | | 65 || 625534 || 625534 || 3159811 || || |
| | |- |
| | | 67 || 625534 || 625534 || 7317929 || || |
| | |- |
| | | 69 || 759630 || 759630 || 8595351 || || |
| | |- |
| | | 71 || 759630 || 759630 || 8595351 || || |
| | |- |
| | | 73 || 759630 || 759630 || 27783092 || || |
| | |- |
| | | 75 || 2157429 || 2157429 || 34531581 || || |
| | |- |
| | | 77 || 2157429 || 2157429 || 34531581 || || |
| | |- |
| | | 79 || 2901533 || 2901533 || 50203972 || || |
| | |- |
| | | 81 || 2901533 || 2901533 || 50203972 || || |
| | |- |
| | | 83 || 2901533 || 2901533 || 50203972 || || |
| | |- |
| | | 85 || 2901533 || 2901533 || 50203972 || || |
| | |- |
| | | 87 || 2901533 || 2901533 || 50203972 || || |
| | |- |
| | | 89 || 2901533 || 2901533 || 50203972 || || |
| | |- |
| | | 91 || 2901533 || 2901533 || 50203972 || || |
| | |- |
| | | 93 || 2901533 || 2901533 || 50203972 || || |
| | |- |
| | | 95 || 2901533 || 2901533 || 50203972 || || |
| | |- |
| | | 97 || 2901533 || 2901533 || 1297643131 || || |
| | |- |
| | | 99 || 2901533 || 2901533 || 1297643131 || || |
| | |- |
| | | 101 || 2901533 || 2901533 || 3888109922 || || |
| | |- |
| | | 103 || 2901533 || 2901533 || 3888109922 || || |
| | |- |
| | | 105 || 2901533 || 2901533 || 3888109922 || || |
| | |- |
| | | 107 || 2901533 || 2901533 || 13805152233 || || |
| | |- |
| | | 109 || 2901533 || 2901533 || 27218556026 || || |
| | |- |
| | | 111 || 2901533 || 2901533 || 27218556026 || || |
| | |- |
| | | 113 || 2901533 || 2901533 || 27218556026 || || |
| | |- |
| | | 115 || 2901533 || 2901533 || 27218556026 || || |
| | |- |
| | | 117 || 2901533 || 2901533 || 27218556026 || || |
| | |- |
| | | 119 || 2901533 || 2901533 || 42586208631 || || |
| | |- |
| | | 121 || 2901533 || 2901533 || 42586208631 || || |
| | |- |
| | | 123 || 2901533 || 2901533 || 42586208631 || || |
| | |- |
| | | 125 || 2901533 || 2901533 || 42586208631 || || |
| | |- style="font-weight: bold; background-color: #dddddd;" |
| | | 127 || 2901533 || 2901533 || 42586208631 || || |
| | |- |
| | | 129 || 2901533 || 2901533 || 42586208631 || || |
| | |- |
| | | 131 || 2901533 || 2901533 || 93678217813** || || |
| | |- |
| | | 133 || 70910024 || 70910024 || 93678217813 || || |
| | |- |
| | | 135 || 70910024 || 70910024 || 93678217813 || || |
| | |} |
| | <nowiki />* Apart from 0edo |
|
| |
|
| **Links** | | <nowiki />** Purely consistent to the 137-odd-limit</onlyinclude> |
|
| |
|
| [[http://oeis.org/A116474]]
| | The last entry, 70910024edo, is consistent up to the 135-odd-limit. The next edo is [[5407372813edo|5407372813]], reported to be consistent to the 155-odd-limit. |
| [[http://oeis.org/A116475]]
| |
| [[http://oeis.org/A117577]]
| |
| [[http://oeis.org/A117578]]</pre></div>
| |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>Minimal consistent EDOs</title></head><body>An <a class="wiki_link" href="/edo">edo</a> N is <em>consistent</em> with respect to a set of rational numbers s if the <a class="wiki_link" href="/patent%20val">patent val</a> mapping of every element of s is the nearest N-edo approximation. It is <em>uniquely consistent</em> if every element of s is mapped to a unique value. If the set s is the q <a class="wiki_link" href="/odd%20limit">odd limit</a>, we say N is q-limit consistent and q-limit uniquely consistent, respectively. Below is a table of the least consistent, and least uniquely consistent, edo for every odd number up to 135.<br />
| |
| <br />
| |
|
| |
|
| | == OEIS integer sequences links == |
| | * {{OEIS|A116474|Equal divisions of the octave with progressively increasing consistency levels}} |
| | * {{OEIS|A116475|Equal divisions of the octave with progressively increasing consistency limits and distinct approximations for all the ratios in the tonality diamond of that limit}} |
| | * {{OEIS|A117577|Equal divisions of the octave with nondecreasing consistency levels.}} |
| | * {{OEIS|A117578|Equal divisions of the octave with nondecreasing consistency limits and distinct approximations for all the ratios in the tonality diamond of that limit}} |
|
| |
|
| <table class="wiki_table">
| | == See also == |
| <tr>
| | * [[Consistency limits of small EDOs]] |
| <td>Odd limit<br />
| | * {{u|ArrowHead294|Purely consistent EDOs by odd limit}} |
| </td>
| |
| <td>Smallest consistent<br />
| |
| </td>
| |
| <td>Smallest uniquely consistent<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>1<br />
| |
| </td>
| |
| <td>1<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>1<br />
| |
| </td>
| |
| <td>3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>3<br />
| |
| </td>
| |
| <td>9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>4<br />
| |
| </td>
| |
| <td>27<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>5<br />
| |
| </td>
| |
| <td>41<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| <td>58<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>26<br />
| |
| </td>
| |
| <td>87<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>29<br />
| |
| </td>
| |
| <td>111<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>58<br />
| |
| </td>
| |
| <td>149<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>80<br />
| |
| </td>
| |
| <td>217<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>21<br />
| |
| </td>
| |
| <td>94<br />
| |
| </td>
| |
| <td>282<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>23<br />
| |
| </td>
| |
| <td>94<br />
| |
| </td>
| |
| <td>282<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>25<br />
| |
| </td>
| |
| <td>282<br />
| |
| </td>
| |
| <td>388<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>27<br />
| |
| </td>
| |
| <td>282<br />
| |
| </td>
| |
| <td>388<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>29<br />
| |
| </td>
| |
| <td>282<br />
| |
| </td>
| |
| <td>1323<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>31<br />
| |
| </td>
| |
| <td>311<br />
| |
| </td>
| |
| <td>1600<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>33<br />
| |
| </td>
| |
| <td>311<br />
| |
| </td>
| |
| <td>1600<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>35<br />
| |
| </td>
| |
| <td>311<br />
| |
| </td>
| |
| <td>1600<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>37<br />
| |
| </td>
| |
| <td>311<br />
| |
| </td>
| |
| <td>1600<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>39<br />
| |
| </td>
| |
| <td>311<br />
| |
| </td>
| |
| <td>2554<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>41<br />
| |
| </td>
| |
| <td>311<br />
| |
| </td>
| |
| <td>2554<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>43<br />
| |
| </td>
| |
| <td>17461<br />
| |
| </td>
| |
| <td>17461<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>45<br />
| |
| </td>
| |
| <td>17461<br />
| |
| </td>
| |
| <td>17461<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>47<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>49<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>51<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>53<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>55<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>57<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| <td>20567<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>59<br />
| |
| </td>
| |
| <td>253389<br />
| |
| </td>
| |
| <td>253389<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>61<br />
| |
| </td>
| |
| <td>625534<br />
| |
| </td>
| |
| <td>625534<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>63<br />
| |
| </td>
| |
| <td>625534<br />
| |
| </td>
| |
| <td>625534<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>65<br />
| |
| </td>
| |
| <td>625534<br />
| |
| </td>
| |
| <td>625534<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>67<br />
| |
| </td>
| |
| <td>625534<br />
| |
| </td>
| |
| <td>625534<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>69<br />
| |
| </td>
| |
| <td>759630<br />
| |
| </td>
| |
| <td>759630<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>71<br />
| |
| </td>
| |
| <td>759630<br />
| |
| </td>
| |
| <td>759630<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>73<br />
| |
| </td>
| |
| <td>759630<br />
| |
| </td>
| |
| <td>759630<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>75<br />
| |
| </td>
| |
| <td>2157429<br />
| |
| </td>
| |
| <td>2157429<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>77<br />
| |
| </td>
| |
| <td>2157429<br />
| |
| </td>
| |
| <td>2157429<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>79<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>81<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>83<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>85<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>87<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>91<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>93<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>95<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>97<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>99<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>101<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>103<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>105<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>107<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>109<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>111<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>113<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>115<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>117<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>119<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>121<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>123<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>125<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>127<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>129<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>131<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| <td>2901533<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>133<br />
| |
| </td>
| |
| <td>70910024.<br />
| |
| </td>
| |
| <td>70910024.<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>135<br />
| |
| </td>
| |
| <td>70910024.<br />
| |
| </td>
| |
| <td>70910024.<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | [[Category:Mapping]] |
| <strong>Links</strong><br />
| | [[Category:Consistency]] |
| <br />
| | [[Category:Odd limit]] |
| <a class="wiki_link_ext" href="http://oeis.org/A116474" rel="nofollow">http://oeis.org/A116474</a><br />
| |
| <a class="wiki_link_ext" href="http://oeis.org/A116475" rel="nofollow">http://oeis.org/A116475</a><br />
| |
| <a class="wiki_link_ext" href="http://oeis.org/A117577" rel="nofollow">http://oeis.org/A117577</a><br />
| |
| <a class="wiki_link_ext" href="http://oeis.org/A117578" rel="nofollow">http://oeis.org/A117578</a></body></html></pre></div>
| |