User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
 
(8 intermediate revisions by the same user not shown)
Line 5: Line 5:
= Title1 =
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
64edo's approximations of 3/1, 5/1, 7/1, 11/1 and 17/1 are improved by [[180ed7]], a [[Octave shrinking|compressed-octave]] version of 64edo. The trade-off is a slightly worse 2/1 and 13/1.
38edo's approximation of [[JI]] can be improved by slightly [[octave stretch|stretching the octave]].


[[149ed5]] can also be used: it is similar to 180ed7 but both the improvements and shortcomings are amplified. Most notably its 2/1 isn’t as accurate as 180ed7's.
What follows is a comparison of stretched-octave 38edo tunings.


If one prefers a ''[[Octave stretch|stretched-octave]]'', 64edo's approximations of 3/1, 5/1, 11/1 and 17/1 are improved by [[221ed11]], a stretched version of 64edo. The trade-off is a slightly worse 2/1 and 13/1.
; 38edo
* Step size: 31.579{{c}}, octave size: 1200.00{{c}}
Pure-octaves 38edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|38|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 38edo}}
{{Harmonics in equal|38|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 38edo (continued)}}


[[47ed5/3]] can also be used: it is similar to 221ed11 but both the improvements and shortcomings are amplified. Most notably its 2/1 is not as accurate as 221ed11's.
; [[WE|38et, 13-limit WE tuning]]  
* Step size: 31.599{{c}}, octave size: 1200.77{{c}}
Stretching the octave of 38edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in cet|31.599|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 38et, 13-limit WE tuning}}
{{Harmonics in cet|31.599|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 38et, 13-limit WE tuning (continued)}}


What follows is a comparison of stretched- and compressed-octave 64edo tunings.
; [[ed5|88ed5]]
* Step size: 31.663{{c}}, octave size: 1203.18{{c}}
Stretching the octave of 38edo by around 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 88ed5 does this.
{{Harmonics in equal|88|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 88ed5}}
{{Harmonics in equal|88|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 88ed5 (continued)}}


; [[ed7|179ed7]]
; [[zpi|166zpi]]  
* Octave size: 1204.50{{c}}
* Step size: 31.671{{c}}, octave size: 1203.48{{c}}
Stretching the octave of 64edo by around 4.5{{c}} results in improved primes 3, 5, 7 and 13, but worse primes 2 and 11. This approximates all harmonics up to 16 within 8.99{{c}}. The tuning 179ed7 does this. So does the tuning 326zpi whose octave is identical within 0.3{{c}}.
Stretching the octave of 38edo by around 3.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 166zpi does this.
{{Harmonics in equal|179|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 179ed7}}
{{Harmonics in cet|31.671|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 166zpi}}
{{Harmonics in equal|179|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 179ed7 (continued)}}
{{Harmonics in cet|31.671|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 166zpi (continued)}}


; [[ed6|165ed6]]
; [[60edt]]  
* Octave size: 1203.18{{c}}
* Step size: 31.699{{c}}, octave size: 1204.57{{c}}
Stretching the octave of 64edo by around 3{{c}} results in improved primes 3, 5, 7, 11, 13 and 17, but a worse prime 2. This approximates all harmonics up to 16 within 9.25{{c}}. The tuning 165ed6 does this.
Stretching the octave of 38edo by around 4.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 60edt does this.
{{Harmonics in equal|165|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 165ed6}}
{{Harmonics in equal|60|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 60edt}}
{{Harmonics in equal|165|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 165ed6 (continued)}}
{{Harmonics in equal|60|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 60edt (continued)}}
 
; [[ed12|229ed12]]
* Octave size: 1202.29{{c}}
Stretching the octave of 64edo by around 2{{c}} results in improved primes 3, 5, 7 and 11, but worse primes 2 and 13. This approximates all harmonics up to 16 within 9.17{{c}}. The tuning 229ed12 does this. So does the tuning [[equal tuning|221ed11]] whose octave is identical within 0.1{{c}}.
{{Harmonics in equal|229|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 229ed12}}
{{Harmonics in equal|229|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 229ed12 (continued)}}
 
; [[zpi|327zpi]]
* Step size: 18.767{{c}}, octave size: 1201.09{{c}}
Stretching the octave of 64edo by around 1{{c}} results in improved primes 3 and 11, but worse primes 2, 5, 7 and 13. This approximates all harmonics up to 16 within 9.23{{c}}. The tuning 327zpi does this.
{{Harmonics in cet|18.767|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 327zpi}}
{{Harmonics in cet|18.767|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 327zpi (continued)}}
 
; [[WE|64et, 11-limit WE tuning]]
* Step size: 18.755{{c}}, octave size: 1200.32{{c}}
Stretching the octave of 64edo by around a third of a cent results in slightly improved primes 3 and 11, but slightly worse primes 2, 5, 7 and 13. This approximates all harmonics up to 16 within 8.50{{c}}. Its 11-limit WE tuning and 11-limit [[TE]] tuning both do this.
{{Harmonics in cet|18.755|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 64et, 11-limit WE tuning}}
{{Harmonics in cet|18.755|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 64et, 11-limit WE tuning (continued)}}
 
; 64edo
* Step size: 18.750{{c}}, octave size: 1200.00{{c}}
Pure-octaves 64edo approximates all harmonics up to 16 within 8.21{{c}}. The octave of 64edo's 13-limit [[WE]] tuning differs by only 0.13{{c}} from pure.
{{Harmonics in equal|64|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 64edo}}
{{Harmonics in equal|64|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 64edo (continued)}}
 
; [[zpi|328zpi]]
* Step size: 18.721{{c}}, octave size: 1198.14{{c}}
Compressing the octave of 64edo by just under 2{{c}} results in improved primes 3, 5, 7 and 11, but worse primes 2 and 13. This approximates all harmonics up to 16 within 8.02{{c}}. The tuning 328zpi does this.
{{Harmonics in cet|18.721|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 328zpi}}
{{Harmonics in cet|18.721|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 328zpi (continued)}}
 
; [[ed7|180ed7]]
* Octave size: 1197.80{{c}}
Compressing the octave of 64edo by just over 2{{c}} results in improved primes 3, 5, 7 and 11, but worse primes 2 and 13. This approximates all harmonics up to 16 within 9.34{{c}}. The tuning 180ed7 does this.
{{Harmonics in equal|180|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 180ed7}}
{{Harmonics in equal|180|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 180ed7 (continued)}}
 
; [[ed12|230ed12]]
* Octave size: 1197.07{{c}}
Compressing the octave of 64edo by around 3{{c}} results in improved primes 3, 5, 7 and 11, but worse primes 2 and 13. This approximates all harmonics up to 16 within 8.80{{c}}. The tuning 230ed12 does this.
{{Harmonics in equal|230|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 230ed12}}
{{Harmonics in equal|230|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 230ed12 (continued)}}
 
; [[ed5|149ed5]]
* Step size: Octave size: NNN{{c}}
Compressing the octave of 64edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 149ed5 does this.
{{Harmonics in equal|149|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 149ed5}}
{{Harmonics in equal|149|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 149ed5 (continued)}}


= Title2 =
= Title2 =
Line 95: Line 59:
; High-priority
; High-priority


64edo
118edo (choose ZPIS)
* 179ed7 (octave is identical to 326zpi within 0.3{{c}})
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}}
* 165ed6
* 187edt
* 229ed12 (octave is identical to 221ed11 within 0.1{{c}})
* 69edf
* 327zpi (18.767c)
* 13-limit WE (10.171c)
* 11-limit WE (18.755c)
* Best nearby ZPI(s)
''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}''
 
* 328zpi (18.721c)
103edo (narrow down edonoi, choose ZPIS)
* 180ed7
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}}
* 230ed12
* 163edt
* 149ed5
* 239ed5
* 266ed6
* 289ed7
* 356ed11
* 369ed12
* 381ed13
* 421ed17
* 466ed23
* 13-limit WE (11.658c)
* Best nearby ZPI(s)
 
111edo (choose ZPIS)
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
 
13edo
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}}
* Main: "13edo and optimal octave stretching"
* 2.5.11.13 WE (92.483c)
* 2.5.7.13 WE (92.804c)
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)
 
104edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)


; Medium priority
; Medium-priority


25edo
25edo
Line 132: Line 126:
30edo
30edo
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
34edo
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 165: Line 152:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


38edo
15edo
{{harmonics in equal | 38 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 179: Line 166:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


10edo
18edo
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 186: Line 173:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


11edo
24edo
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(
 
15edo
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
 
18edo
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)


48edo
48edo
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
24edo
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 233: Line 199:
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)s)


13edo
10edo
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}}
* Main: "13edo and optimal octave stretching"
* Nearby edt, ed6, ed12 and/or edf
* 2.5.11.13 WE (92.483c)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 2.5.7.13 WE (92.804c)
* 1-2 WE tunings
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)
 
118edo (choose ZPIS)
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}}
* 187edt
* 69edf
* 13-limit WE (10.171c)
* Best nearby ZPI(s)
* Best nearby ZPI(s)


103edo (narrow down edonoi, choose ZPIS)
11edo
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}}
* 163edt
* 239ed5
* 266ed6
* 289ed7
* 356ed11
* 369ed12
* 381ed13
* 421ed17
* 466ed23
* 13-limit WE (11.658c)
* Best nearby ZPI(s)
 
111edo (choose ZPIS)
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 271: Line 215:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


; Low priority
34edo
 
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}}
104edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)
; Low priority


125edo
125edo