|
|
(16 intermediate revisions by the same user not shown) |
Line 5: |
Line 5: |
| = Title1 = | | = Title1 = |
| == Octave stretch or compression == | | == Octave stretch or compression == |
| What follows is a comparison of stretched- and compressed-octave 54edo tunings.
| | 38edo's approximation of [[JI]] can be improved by slightly [[octave stretch|stretching the octave]]. |
|
| |
|
| ; [[ed6|139ed6]]
| | What follows is a comparison of stretched-octave 38edo tunings. |
| * Step size: NNN{{c}}, octave size: NNN{{c}}
| |
| Stretching the octave of 54edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 139ed6 does this. So does the tuning 262zpi whose octave is identical to 139ed6 within 0.2{{c}}.
| |
| {{Harmonics in equal|139|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 139ed6}}
| |
| {{Harmonics in equal|139|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 139ed6 (continued)}}
| |
|
| |
|
| ; [[ed7|151ed7]] | | ; 38edo |
| * Step size: NNN{{c}}, octave size: NNN{{c}} | | * Step size: 31.579{{c}}, octave size: 1200.00{{c}} |
| Stretching the octave of 54edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 151ed7 does this.
| | Pure-octaves 38edo approximates all harmonics up to 16 within NNN{{c}}. |
| {{Harmonics in equal|151|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 151ed7}} | | {{Harmonics in equal|38|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 38edo}} |
| {{Harmonics in equal|151|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 151ed7 (continued)}} | | {{Harmonics in equal|38|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 38edo (continued)}} |
|
| |
|
| ; [[ed12|193ed12]] | | ; [[WE|38et, 13-limit WE tuning]] |
| * Step size: NNN{{c}}, octave size: NNN{{c}} | | * Step size: 31.599{{c}}, octave size: 1200.77{{c}} |
| Stretching the octave of 54edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 193ed12 does this. | | Stretching the octave of 38edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. |
| {{Harmonics in equal|193|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 193ed12}} | | {{Harmonics in cet|31.599|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 38et, 13-limit WE tuning}} |
| {{Harmonics in equal|193|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 193ed12 (continued)}} | | {{Harmonics in cet|31.599|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 38et, 13-limit WE tuning (continued)}} |
|
| |
|
| ; [[zpi|263zpi]] | | ; [[ed5|88ed5]] |
| * Step size: 22.243{{c}}, octave size: NNN{{c}} | | * Step size: 31.663{{c}}, octave size: 1203.18{{c}} |
| Stretching the octave of 54edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 263zpi does this. | | Stretching the octave of 38edo by around 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 88ed5 does this. |
| {{Harmonics in cet|22.243|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 263zpi}} | | {{Harmonics in equal|88|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 88ed5}} |
| {{Harmonics in cet|22.243|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 263zpi (continued)}} | | {{Harmonics in equal|88|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 88ed5 (continued)}} |
|
| |
|
| ; 54edo | | ; [[zpi|166zpi]] |
| * Step size: 22.222{{c}}, octave size: NNN{{c}} | | * Step size: 31.671{{c}}, octave size: 1203.48{{c}} |
| Pure-octaves 54edo approximates all harmonics up to 16 within NNN{{c}}.
| | Stretching the octave of 38edo by around 3.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 166zpi does this. |
| {{Harmonics in equal|54|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 54edo}} | | {{Harmonics in cet|31.671|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 166zpi}} |
| {{Harmonics in equal|54|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 54edo (continued)}} | | {{Harmonics in cet|31.671|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 166zpi (continued)}} |
|
| |
|
| ; [[WE|54et, 13-limit WE tuning]] | | ; [[60edt]] |
| * Step size: 22.198{{c}}, octave size: NNN{{c}} | | * Step size: 31.699{{c}}, octave size: 1204.57{{c}} |
| Compressing the octave of 54edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this. So does the tuning [[equal tuning|187ed11]] whose octave is identical to 13lim WE within 0.1{{c}}.
| | Stretching the octave of 38edo by around 4.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 60edt does this. |
| {{Harmonics in cet|22.198|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 54et, 13-limit WE tuning}}
| | {{Harmonics in equal|60|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 60edt}} |
| {{Harmonics in cet|22.198|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 54et, 13-limit WE tuning (continued)}}
| | {{Harmonics in equal|60|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 60edt (continued)}} |
| | |
| ; [[zpi|264zpi]]
| |
| * Step size: 22.175{{c}}, octave size: NNN{{c}}
| |
| Compressing the octave of 54edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 264zpi does this. So does the tuning 194ed12 whose octave is identical to 264zpi within 0.01{{c}}.
| |
| {{Harmonics in cet|22.175|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 264zpi}}
| |
| {{Harmonics in cet|22.175|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 264zpi (continued)}}
| |
| | |
| ; [[ed7|152ed7]]
| |
| * Step size: NNN{{c}}, octave size: NNN{{c}}
| |
| Compressing the octave of 54edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 152ed7 does this.
| |
| {{Harmonics in equal|152|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 152ed7}} | |
| {{Harmonics in equal|152|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 152ed7 (continued)}} | |
| | |
| ; [[ed6|140ed6]]
| |
| * Step size: NNN{{c}}, octave size: NNN{{c}}
| |
| Compressing the octave of 54edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 140ed6 does this.
| |
| {{Harmonics in equal|140|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 140ed6}}
| |
| {{Harmonics in equal|140|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 140ed6 (continued)}}
| |
| | |
| ; [[ed5|126ed5]]
| |
| * Step size: NNN{{c}}, octave size: NNN{{c}}
| |
| Compressing the octave of 54edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 126ed5 does this. So does the tuning [[86edt]] whose octave is identical to 126ed5 within 0.1{{c}}.
| |
| {{Harmonics in equal|126|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 126ed5}}
| |
| {{Harmonics in equal|126|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 126ed5 (continued)}}
| |
|
| |
|
| = Title2 = | | = Title2 = |
Line 87: |
Line 59: |
| ; High-priority | | ; High-priority |
|
| |
|
| 54edo
| | 118edo (choose ZPIS) |
| * 139ed6 (octave is identical to 262zpi within 0.2{{c}})
| | {{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}} |
| * 151ed7
| | * 187edt |
| * 193ed12 | | * 69edf |
| * 263zpi (22.243c) | | * 13-limit WE (10.171c) |
| * 13-limit WE (22.198c) (octave is identical to 187ed11 within 0.1{{c}}) | | * Best nearby ZPI(s) |
| * 264zpi (22.175c) (octave is identical to 194ed12 within 0.01{{c}})
| |
| * 152ed7 | |
| * 140ed6
| |
| * 126ed5 (octave is identical to 86edt within 0.1{{c}})
| |
|
| |
|
| 64edo
| | 103edo (narrow down edonoi, choose ZPIS) |
| * 179ed7 (octave is identical to 326zpi within 0.3{{c}})
| | {{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}} |
| * 165ed6 | | * 163edt |
| * 229ed12 (octave is identical to 221ed11 within 0.1{{c}}) | | * 239ed5 |
| * 327zpi (18.767c) | | * 266ed6 |
| * 11-limit WE (18.755c) | | * 289ed7 |
| ''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}''
| | * 356ed11 |
| * 328zpi (18.721c) | | * 369ed12 |
| * 180ed7
| | * 381ed13 |
| * 230ed12
| | * 421ed17 |
| * 149ed5
| | * 466ed23 |
| | * 13-limit WE (11.658c) |
| | * Best nearby ZPI(s) |
|
| |
|
| 59edo (reduce # of edonoi or zpi)
| | 111edo (choose ZPIS) |
| * 152ed6
| | {{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}} |
| * 294zpi (20.399c)
| | * Nearby edt, ed6, ed12 and/or edf |
| * 211ed12
| | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
| * 295zpi (20.342c)
| | * 1-2 WE tunings |
| ''pure octaves 59edo octave is identical to 137ed5 within 0.05{{c}}''
| | * Best nearby ZPI(s) |
| * 13-limit WE (20.320c) | |
| * 7-limit WE (20.301c) | |
| * 166ed7 | |
| * 212ed12
| |
| * 296zpi (20.282c)
| |
| * 153ed6
| |
|
| |
|
| ; Medium priority | | 13edo |
| | {{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}} |
| | * Main: "13edo and optimal octave stretching" |
| | * 2.5.11.13 WE (92.483c) |
| | * 2.5.7.13 WE (92.804c) |
| | * 2.3 WE (91.405c) (good for opposite 7 mapping) |
| | * 38zpi (92.531c) |
| | |
| | 104edo |
| | * Nearby edt, ed6, ed12 and/or edf |
| | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
| | * 1-2 WE tunings |
| | * Best nearby ZPI(s) |
| | |
| | ; Medium-priority |
|
| |
|
| 25edo | | 25edo |
Line 148: |
Line 126: |
| 30edo | | 30edo |
| {{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}} | | {{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}} |
| * Nearby edt, ed6, ed12 and/or edf
| |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional)
| |
| * 1-2 WE tunings
| |
| * Best nearby ZPI(s)
| |
|
| |
| 34edo
| |
| {{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}}
| |
| * Nearby edt, ed6, ed12 and/or edf | | * Nearby edt, ed6, ed12 and/or edf |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional) | | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
Line 181: |
Line 152: |
| * Best nearby ZPI(s) | | * Best nearby ZPI(s) |
|
| |
|
| 38edo
| | 15edo |
| {{harmonics in equal | 38 | 2 | 1 | intervals=integer | columns=12}} | | {{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}} |
| * Nearby edt, ed6, ed12 and/or edf | | * Nearby edt, ed6, ed12 and/or edf |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional) | | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
Line 195: |
Line 166: |
| * Best nearby ZPI(s) | | * Best nearby ZPI(s) |
|
| |
|
| 10edo
| | 18edo |
| {{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}} | | {{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}} |
| * Nearby edt, ed6, ed12 and/or edf | | * Nearby edt, ed6, ed12 and/or edf |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional) | | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
Line 202: |
Line 173: |
| * Best nearby ZPI(s) | | * Best nearby ZPI(s) |
|
| |
|
| 11edo
| | 24edo |
| {{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}} | | {{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}} |
| * Nearby edt, ed6, ed12 and/or edf
| |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional)
| |
| * 1-2 WE tunings
| |
| * Best nearby ZPI(s)
| |
| | |
| 15edo
| |
| {{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}}
| |
| * Nearby edt, ed6, ed12 and/or edf
| |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional)
| |
| * 1-2 WE tunings
| |
| * Best nearby ZPI(s)
| |
| | |
| 18edo
| |
| {{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}}
| |
| * Nearby edt, ed6, ed12 and/or edf | | * Nearby edt, ed6, ed12 and/or edf |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional) | | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
| * 1-2 WE tunings | | * 1-2 WE tunings |
| * Best nearby ZPI(s) | | * Best nearby ZPI( |
|
| |
|
| 48edo | | 48edo |
| {{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}} | | {{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}} |
| * Nearby edt, ed6, ed12 and/or edf
| |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional)
| |
| * 1-2 WE tunings
| |
| * Best nearby ZPI(s)
| |
|
| |
| 24edo
| |
| {{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}}
| |
| * Nearby edt, ed6, ed12 and/or edf | | * Nearby edt, ed6, ed12 and/or edf |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional) | | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
Line 249: |
Line 199: |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional) | | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
| * 1-2 WE tunings | | * 1-2 WE tunings |
| * Best nearby ZPI(s) | | * Best nearby ZPI(s)s) |
|
| |
|
| 13edo
| | 10edo |
| {{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}} | | {{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}} |
| * Main: "13edo and optimal octave stretching" | | * Nearby edt, ed6, ed12 and/or edf |
| * 2.5.11.13 WE (92.483c) | | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
| * 2.5.7.13 WE (92.804c)
| | * 1-2 WE tunings |
| * 2.3 WE (91.405c) (good for opposite 7 mapping) | |
| * 38zpi (92.531c)
| |
| | |
| 118edo (choose ZPIS)
| |
| {{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}}
| |
| * 187edt
| |
| * 69edf
| |
| * 13-limit WE (10.171c)
| |
| * Best nearby ZPI(s) | | * Best nearby ZPI(s) |
|
| |
|
| 103edo (narrow down edonoi, choose ZPIS)
| | 11edo |
| {{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}} | | {{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}} |
| * 163edt
| |
| * 239ed5
| |
| * 266ed6
| |
| * 289ed7
| |
| * 356ed11
| |
| * 369ed12
| |
| * 381ed13
| |
| * 421ed17
| |
| * 466ed23
| |
| * 13-limit WE (11.658c)
| |
| * Best nearby ZPI(s)
| |
| | |
| 111edo (choose ZPIS)
| |
| {{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}}
| |
| * Nearby edt, ed6, ed12 and/or edf | | * Nearby edt, ed6, ed12 and/or edf |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional) | | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
Line 287: |
Line 215: |
| * Best nearby ZPI(s) | | * Best nearby ZPI(s) |
|
| |
|
| ; Low priority
| | 34edo |
| | | {{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}} |
| 104edo
| |
| * Nearby edt, ed6, ed12 and/or edf | | * Nearby edt, ed6, ed12 and/or edf |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional) | | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
| * 1-2 WE tunings | | * 1-2 WE tunings |
| * Best nearby ZPI(s) | | * Best nearby ZPI(s) |
| | |
| | ; Low priority |
|
| |
|
| 125edo | | 125edo |