User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
 
(37 intermediate revisions by the same user not shown)
Line 5: Line 5:
= Title1 =
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
{{main|23edo and octave stretching}}
What follows is a comparison of stretched- and compressed-octave 33edo tunings.


23edo is not typically taken seriously as a tuning except by those interested in extreme [[xenharmony]]. Its fifths are significantly flat, and is neighbors [[22edo]] and [[24edo]] generally get more attention.
; [[115ed11]] (123ed13 & 1ed47/46 are identical within <0.3 ¢)
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|115|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|115|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


However, when using a slightly [[stretched tuning|stretched octave]] of around 1216 [[cents]], 23edo looks much better, and it approximates the [[perfect fifth]] (and various other [[interval]]s involving the 5th, 7th, 11th, and 13th [[harmonic]]s) to within 18 cents or so. If we can tolerate errors around this size in [[12edo]], we can probably tolerate them in stretched-23 as well.
; [[77ed5]] (139zpi's octave differs by only 0.2 ¢)
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|77|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|77|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


Stretched 23edo is one of the best tunings to use for exploring the [[antidiatonic]] scale since its fifth is more [[consonant]] and less "[[Wolf interval|wolfish]]" than fifths in other [[pelogic family]] temperaments.
; [[93ed7]] (optimised for dual-fifths)
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|93|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|93|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


What follows is a comparison of stretched- and compressed-octave 23edo tunings.
; 33edo
 
* Step size: 36.363{{c}}, octave size: NNN{{c}}  
; [[zpi|86zpi]]
* Step size: 51.653{{c}}, octave size: 1188.0{{c}}
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|51.653|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|51.653|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}
 
; [[60ed6]]
* Step size: 51.700{{c}}, octave size: 1189.1{{c}}
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 60ed6 does this. So does the tuning [[equal tuning|105ed23]] whose octave is identical within 0.01{{c}}.
{{Harmonics in equal|60|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|60|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}
 
; [[zpi|85zpi]]
* Step size: 52.114{{c}}, octave size: 1198.6{{c}}
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 85zpi does this. So does the tuning [[ed9|73ed9]] whose octave is identical within 0.02{{c}}.
{{Harmonics in cet|52.114|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|52.114|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}
 
; 23edo
* Step size: NNN{{c}}, octave size: 1200.0{{c}}  
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}.
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|23|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}}
{{Harmonics in equal|33|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}}
{{Harmonics in equal|23|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}}
{{Harmonics in equal|33|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}}


; [[WE|23et, 13-limit WE tuning]]  
; [[WE|33et, 13-limit WE tuning]] (36.357c)
* Step size: 52.237{{c}}, octave size: 1201.5{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this.
{{Harmonics in cet|52.237|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in cet|36.357|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in cet|52.237|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}
{{Harmonics in cet|36.357|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}


; [[WE|23et, 2.3.5.13 WE tuning]]
; [[zpi|138zpi]] (36.394c) (122ed13's octave differs by only 0.1 ¢)
* Step size: 52.447{{c}}, octave size: 1206.3{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. So does the tuning [[ed10|76ed10]] whose octave is identical within 0.01{{c}}.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|52.447|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in cet|36.394|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|52.447|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}
{{Harmonics in cet|36.394|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}


; [[59ed6]]  
; [[114ed11]]  
* Step size: 52.575{{c}}, octave size: 1209.2{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 59ed6 does this. So does the tuning [[53ed5]] whose octave is identical within 0.01{{c}}.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|59|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|114|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|59|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}
{{Harmonics in equal|114|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


; [[zpi|84zpi]]  
; [[52ed13]]  
* Step size: 52.615{{c}}, octave size: 1210.1{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in cet|52.615|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in equal|52|13|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in cet|52.615|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}
{{Harmonics in equal|52|13|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


; [[36edt]]  
; [[92ed7]] (137zpi's octave differs by only 0.3 ¢)
* Step size: 52.832{{c}}, octave size: 1215.1{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|36|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|92|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|36|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}
{{Harmonics in equal|92|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


; [[84ed13]]  
; [[76ed5]]  
* Step size: 52.863{{c}}, octave size: 1215.9{{c}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|84|13|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|76|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|84|13|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}
{{Harmonics in equal|76|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


= Title2 =
= Title2 =
=== Lab ===
=== Lab ===


54edo (possibly narrow down edonoi)
Place holder
* 38ed5/3 (stretch, improves 3.5.7.11.13.17.19.23)
{{harmonics in equal | 38 | 5 | 3 | intervals=prime}}
* 261zpi (22.380c)
{{harmonics in cet | 22.380 | intervals=prime}}
* 262zpi (22.313c)
{{harmonics in cet | 22.313 | intervals=prime}}
* 263zpi (22.243c)
{{harmonics in cet | 22.243 | intervals=prime}}
* pure octave 54edo
{{harmonics in equal | 54 | 2 | 1 | intervals=integer | columns=12}}
* 13-limit WE (22.198c)
{{harmonics in cet | 22.198 | intervals=prime}}
* 2.3.7.11.13 WE (22.180c)
{{harmonics in cet | 22.180 | intervals=prime}}
* 264zpi (22.175c)
{{harmonics in cet | 22.175 | intervals=prime}}
* 152ed7
{{harmonics in equal | 152 | 7 | 1 | intervals=prime}}
* 86edt
{{harmonics in equal | 86 | 3 | 1 | intervals=prime}}
* 126ed5
{{harmonics in equal | 126 | 5 | 1 | intervals=prime}}
* 40ed5/3 (compress, improves 3.5.11.13.17.19 (not 7))
{{harmonics in equal | 40 | 5 | 3 | intervals=prime}}
* 265zpi (22.100c)
{{harmonics in cet | 22.100 | intervals=prime}}
 
<br><br>
 
59edo (narrow down ZPIs) (Nothing special abt these choices)
* 293zpi (20.454c)
{{harmonics in cet | 20.454 | intervals=prime}}
* 93edt
{{harmonics in equal | 93 | 3 | 1 | intervals=prime}}
* 203ed11
{{harmonics in equal | 203 | 11 | 1 | intervals=prime}}
* 294zpi (20.399c)
{{harmonics in cet | 20.399 | intervals=prime}}
* pure octaves 59edo
{{harmonics in equal | 59 | 2 | 1 | intervals=integer | columns=12}}
* 295zpi (20.342c)
{{harmonics in cet | 20.342 | intervals=prime}}
* 13-limit WE (20.320c)
{{harmonics in cet | 20.320 | intervals=prime}}
* 11-limit WE (20.310c)
{{harmonics in cet | 20.310 | intervals=prime}}
* 7-limit WE (20.301c)
{{harmonics in cet | 20.301 | intervals=prime}}
* 166ed7
{{harmonics in equal | 166 | 7 | 1 | intervals=prime}}
* 296zpi (20.282c)
{{harmonics in cet | 20.282 | intervals=prime}}
* 297zpi (20.229c)
{{harmonics in cet | 20.229 | intervals=prime}}
 
<br><br>
 
64edo (narrow down ZPIs)
* 325zpi (18.868c)
{{harmonics in cet | 18.868 | intervals=prime}}
* 326zpi (18.816c)
{{harmonics in cet | 18.816 | intervals=prime}}
{{harmonics in equal | 47 | 5 | 3 | intervals=prime}}
* 221ed11
{{harmonics in equal | 221 | 11 | 1 | intervals=prime}}
* 327zpi (18.767c)
{{harmonics in cet | 18.767 | intervals=prime}}
* 11-limit WE (18.755c)
{{harmonics in cet | 18.755 | intervals=prime}}
* 13-limit WE (18.752c)
{{harmonics in cet | 18.752 | intervals=prime}}
* pure octaves 64edo
{{harmonics in equal | 64 | 2 | 1 | intervals=integer | columns=12}}
* 328zpi (18.721c)
{{harmonics in cet | 18.721 | intervals=prime}}
* 180ed7
{{harmonics in equal | 180 | 7 | 1 | intervals=prime}}
* 149ed5
{{harmonics in equal | 149 | 5 | 1 | intervals=prime}}
* 329zpi (18.672c)
{{harmonics in cet | 18.672 | intervals=prime}}
* 330zpi (18.630c)
{{harmonics in cet | 18.630 | intervals=prime}}




Line 168: Line 77:


{{harmonics in cet | 300 | intervals=prime}}
{{harmonics in cet | 300 | intervals=prime}}
{{harmonics in equal | 140 | 12 | 1 | intervals=prime}}
{{harmonics in equal | 140 | 12 | 1 | intervals=prime}}


Line 176: Line 86:


; High-priority
; High-priority
60edo (narrow down edonoi & ZPIs)
* 35edf
* 139ed5
* 301zpi (20.027c)
* 95edt
* 13-limit WE (20.013c) (155ed6 has octaves only 0.02{{c}} different)
* 215ed12
* 302zpi (19.962c)
* 208ed11 (ideal for catnip temperament)
* 303zpi (19.913c)
32edo
* 13-limit WE (37.481c)
* 11-limit WE (37.453c)
* 90ed7 (optimal for dual-5) (133zpi's octave only differs by 0.4{{c}})
* 51edt
* 134zpi (37.176c)
* 75ed5
33edo
* 76ed5
* 92ed7 (137zpi's octave differs by only 0.3{{c}})
* 52ed13
* 114ed11
* 138zpi (36.394c) (122ed13's octave differs by only 0.1{{c}})
* 13-limit WE (36.357c)
* 11-limit WE (36.349c)
* 93ed7 (optimised for dual-fifths)
* 77ed5 (139zpi's octave differs by only 0.2{{c}})
* 123ed13 / 1ed47/46 (identical within <0.1{{c}})
* 115ed11


39edo
39edo
Line 213: Line 91:
* 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2{{c}})
* 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2{{c}})
* 101ed6 (octave of 172zpi differs by only 0.4{{c}})
* 101ed6 (octave of 172zpi differs by only 0.4{{c}})
* 2.3.5.11 WE (30.703c)
* 173zpi (30.672c) (octave of 62edt differs by only 0.2{{c}})
* 173zpi (30.672c) (octave of 62edt differs by only 0.2{{c}})
* 110ed7 (octave of 145ed13 differs by only 0.1{{c}})
* 110ed7 (octave of 145ed13 differs by only 0.1{{c}})
* 91ed5
* 91ed5
42edo
*Good <27% rel err
*Okay <40% rel err
{{harmonics in equal | 42 | 2 | 1 | intervals=integer | columns=12}}
* 42ed257/128 (good 2.3.5.7; bad 11.13)
* 11ed6/5 (good 2.3.5; okay 7.11.13)
* 189zpi (28.689c) (good 2.5.13; okay 3.11; bad 7)
* 190zpi (28.572c)
* 13-limit WE (28.534c)
* 34ed7/4 (good 2.5.7.13; okay 3.11)
* 7-limit WE (28.484c) (good 2.3.5.11.13; bad 7)
* 191zpi (28.444c)
* 1ed123/121 (good 2.3.5.11; okay 13; bad 7)


45edo
45edo
Line 241: Line 104:
* 71edt (octave identical to 155ed11 within 0.3{{c}})
* 71edt (octave identical to 155ed11 within 0.3{{c}})


54edo (possibly narrow down edonoi)
54edo
{{harmonics in equal | 54 | 2 | 1 | intervals=integer | columns=12}}
* 139ed6 (octave is identical to 262zpi within 0.2{{c}})
* 126ed5
* 151ed7
* 38ed5/3 (stretch, improves 3.5.7.11.13.17.19.23)
* 193ed12
* 262zpi (22.313c)
* 263zpi (22.243c)
* 263zpi (22.243c)
* 13-limit WE (22.198c)
* 13-limit WE (22.198c) (octave is identical to 187ed11 within 0.1{{c}})
* 2.3.7.11.13 WE (22.180c)
* 264zpi (22.175c) (octave is identical to 194ed12 within 0.01{{c}})
* 264zpi (22.175c)
* 40ed5/3 (compress, improves 3.5.11.13.17.19 (not 7))
* 152ed7
* 152ed7
* 86edt
* 140ed6
* 126ed5 (octave is identical to 86edt within 0.1{{c}})
 
64edo
* 179ed7 (octave is identical to 326zpi within 0.3{{c}})
* 165ed6
* 229ed12 (octave is identical to 221ed11 within 0.1{{c}})
* 327zpi (18.767c)
* 11-limit WE (18.755c)
''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}''
* 328zpi (18.721c)
* 180ed7
* 230ed12
* 149ed5
 
33edo (reduce # of edonoi)
* 76ed5
* 92ed7 (137zpi's octave differs by only 0.3{{c}})
* 52ed13
* 114ed11
* 138zpi (36.394c) (122ed13's octave differs by only 0.1{{c}})
* 13-limit WE (36.357c)
* 93ed7 (optimised for dual-fifths)
* 77ed5 (139zpi's octave differs by only 0.2{{c}})
* 123ed13 / 1ed47/46 (identical within <0.1{{c}})
* 115ed11
 
42edo (reduce # of edonoi)
* 108ed6 (octave is identical to 97ed5 within 0.1{{c}})
* 189zpi (28.689c)
* 150ed12
* 145ed11
''190zpi's octave is within 0.05{{c}} of pure-octaves 42edo''
* 118ed7
* 13-limit WE (28.534c)
* 151ed12 (octave is identical to 7-limit WE within 0.3{{c}})
* 109ed6
* 191zpi (28.444c)
* 67edt


59edo (narrow down ZPIs)
59edo (reduce # of edonoi or zpi)
* (Nothing special abt these choices)
* 152ed6
{{harmonics in equal | 59 | 2 | 1 | intervals=integer | columns=12}}
* 93edt
* 203ed11
* 293zpi (20.454c)
* 294zpi (20.399c)
* 294zpi (20.399c)
* 211ed12
* 295zpi (20.342c)
* 295zpi (20.342c)
''pure octaves 59edo octave is identical to 137ed5 within 0.05{{c}}''
* 13-limit WE (20.320c)
* 13-limit WE (20.320c)
* 11-limit WE (20.310c)
* 7-limit WE (20.301c)
* 7-limit WE (20.301c)
* 166ed7
* 212ed12
* 296zpi (20.282c)
* 296zpi (20.282c)
* 297zpi (20.229c)
* 153ed6
* 166ed7
 
64edo (narrow down ZPIs)
{{harmonics in equal | 64 | 2 | 1 | intervals=integer | columns=12}}
* 47ed5/3 (like 221ed11 but benefits & drawbacks both amplified)
* 221ed11
* 325zpi (18.868c)
* 326zpi (18.816c)
* 327zpi (18.767c)
* 11-limit WE (18.755c)
* 13-limit WE (18.752c)
* 328zpi (18.721c)
* 329zpi (18.672c)
* 330zpi (18.630c)
* 180ed7
* 149ed5


; Medium priority
; Medium priority
Line 442: Line 323:
37edo
37edo
{{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
5edo
{{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
6edo
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 498: Line 365:
48edo
48edo
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}}
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
5edo
{{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)
6edo
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)