|
|
(37 intermediate revisions by the same user not shown) |
Line 5: |
Line 5: |
| = Title1 = | | = Title1 = |
| == Octave stretch or compression == | | == Octave stretch or compression == |
| {{main|23edo and octave stretching}}
| | What follows is a comparison of stretched- and compressed-octave 33edo tunings. |
|
| |
|
| 23edo is not typically taken seriously as a tuning except by those interested in extreme [[xenharmony]]. Its fifths are significantly flat, and is neighbors [[22edo]] and [[24edo]] generally get more attention.
| | ; [[115ed11]] (123ed13 & 1ed47/46 are identical within <0.3 ¢) |
| | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. |
| | {{Harmonics in equal|115|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} |
| | {{Harmonics in equal|115|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} |
|
| |
|
| However, when using a slightly [[stretched tuning|stretched octave]] of around 1216 [[cents]], 23edo looks much better, and it approximates the [[perfect fifth]] (and various other [[interval]]s involving the 5th, 7th, 11th, and 13th [[harmonic]]s) to within 18 cents or so. If we can tolerate errors around this size in [[12edo]], we can probably tolerate them in stretched-23 as well.
| | ; [[77ed5]] (139zpi's octave differs by only 0.2 ¢) |
| | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. |
| | {{Harmonics in equal|77|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} |
| | {{Harmonics in equal|77|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} |
|
| |
|
| Stretched 23edo is one of the best tunings to use for exploring the [[antidiatonic]] scale since its fifth is more [[consonant]] and less "[[Wolf interval|wolfish]]" than fifths in other [[pelogic family]] temperaments.
| | ; [[93ed7]] (optimised for dual-fifths) |
| | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. |
| | {{Harmonics in equal|93|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} |
| | {{Harmonics in equal|93|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} |
|
| |
|
| What follows is a comparison of stretched- and compressed-octave 23edo tunings.
| | ; 33edo |
| | | * Step size: 36.363{{c}}, octave size: NNN{{c}} |
| ; [[zpi|86zpi]]
| |
| * Step size: 51.653{{c}}, octave size: 1188.0{{c}}
| |
| Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
| |
| {{Harmonics in cet|51.653|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
| |
| {{Harmonics in cet|51.653|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}
| |
| | |
| ; [[60ed6]]
| |
| * Step size: 51.700{{c}}, octave size: 1189.1{{c}}
| |
| Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 60ed6 does this. So does the tuning [[equal tuning|105ed23]] whose octave is identical within 0.01{{c}}.
| |
| {{Harmonics in equal|60|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
| |
| {{Harmonics in equal|60|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}
| |
| | |
| ; [[zpi|85zpi]] | |
| * Step size: 52.114{{c}}, octave size: 1198.6{{c}} | |
| Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 85zpi does this. So does the tuning [[ed9|73ed9]] whose octave is identical within 0.02{{c}}.
| |
| {{Harmonics in cet|52.114|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
| |
| {{Harmonics in cet|52.114|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}
| |
| | |
| ; 23edo
| |
| * Step size: NNN{{c}}, octave size: 1200.0{{c}}
| |
| Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}. | | Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}. |
| {{Harmonics in equal|23|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}} | | {{Harmonics in equal|33|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}} |
| {{Harmonics in equal|23|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}} | | {{Harmonics in equal|33|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}} |
|
| |
|
| ; [[WE|23et, 13-limit WE tuning]] | | ; [[WE|33et, 13-limit WE tuning]] (36.357c) |
| * Step size: 52.237{{c}}, octave size: 1201.5{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. |
| {{Harmonics in cet|52.237|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} | | {{Harmonics in cet|36.357|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} |
| {{Harmonics in cet|52.237|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} | | {{Harmonics in cet|36.357|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} |
|
| |
|
| ; [[WE|23et, 2.3.5.13 WE tuning]] | | ; [[zpi|138zpi]] (36.394c) (122ed13's octave differs by only 0.1 ¢) |
| * Step size: 52.447{{c}}, octave size: 1206.3{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. So does the tuning [[ed10|76ed10]] whose octave is identical within 0.01{{c}}.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this. |
| {{Harmonics in cet|52.447|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} | | {{Harmonics in cet|36.394|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} |
| {{Harmonics in cet|52.447|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} | | {{Harmonics in cet|36.394|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} |
|
| |
|
| ; [[59ed6]] | | ; [[114ed11]] |
| * Step size: 52.575{{c}}, octave size: 1209.2{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 59ed6 does this. So does the tuning [[53ed5]] whose octave is identical within 0.01{{c}}.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. |
| {{Harmonics in equal|59|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | | {{Harmonics in equal|114|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} |
| {{Harmonics in equal|59|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | | {{Harmonics in equal|114|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} |
|
| |
|
| ; [[zpi|84zpi]] | | ; [[52ed13]] |
| * Step size: 52.615{{c}}, octave size: 1210.1{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. |
| {{Harmonics in cet|52.615|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | | {{Harmonics in equal|52|13|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} |
| {{Harmonics in cet|52.615|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} | | {{Harmonics in equal|52|13|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} |
|
| |
|
| ; [[36edt]] | | ; [[92ed7]] (137zpi's octave differs by only 0.3 ¢) |
| * Step size: 52.832{{c}}, octave size: 1215.1{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. |
| {{Harmonics in equal|36|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | | {{Harmonics in equal|92|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} |
| {{Harmonics in equal|36|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | | {{Harmonics in equal|92|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} |
|
| |
|
| ; [[84ed13]] | | ; [[76ed5]] |
| * Step size: 52.863{{c}}, octave size: 1215.9{{c}} | | * Step size: NNN{{c}}, octave size: NNN{{c}} |
| Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
| | _ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. |
| {{Harmonics in equal|84|13|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | | {{Harmonics in equal|76|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} |
| {{Harmonics in equal|84|13|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | | {{Harmonics in equal|76|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} |
|
| |
|
| = Title2 = | | = Title2 = |
| === Lab === | | === Lab === |
|
| |
|
| 54edo (possibly narrow down edonoi)
| | Place holder |
| * 38ed5/3 (stretch, improves 3.5.7.11.13.17.19.23)
| |
| {{harmonics in equal | 38 | 5 | 3 | intervals=prime}}
| |
| * 261zpi (22.380c)
| |
| {{harmonics in cet | 22.380 | intervals=prime}}
| |
| * 262zpi (22.313c)
| |
| {{harmonics in cet | 22.313 | intervals=prime}}
| |
| * 263zpi (22.243c)
| |
| {{harmonics in cet | 22.243 | intervals=prime}}
| |
| * pure octave 54edo
| |
| {{harmonics in equal | 54 | 2 | 1 | intervals=integer | columns=12}}
| |
| * 13-limit WE (22.198c)
| |
| {{harmonics in cet | 22.198 | intervals=prime}}
| |
| * 2.3.7.11.13 WE (22.180c)
| |
| {{harmonics in cet | 22.180 | intervals=prime}}
| |
| * 264zpi (22.175c)
| |
| {{harmonics in cet | 22.175 | intervals=prime}}
| |
| * 152ed7
| |
| {{harmonics in equal | 152 | 7 | 1 | intervals=prime}}
| |
| * 86edt
| |
| {{harmonics in equal | 86 | 3 | 1 | intervals=prime}}
| |
| * 126ed5
| |
| {{harmonics in equal | 126 | 5 | 1 | intervals=prime}}
| |
| * 40ed5/3 (compress, improves 3.5.11.13.17.19 (not 7))
| |
| {{harmonics in equal | 40 | 5 | 3 | intervals=prime}}
| |
| * 265zpi (22.100c)
| |
| {{harmonics in cet | 22.100 | intervals=prime}}
| |
| | |
| <br><br>
| |
| | |
| 59edo (narrow down ZPIs) (Nothing special abt these choices)
| |
| * 293zpi (20.454c)
| |
| {{harmonics in cet | 20.454 | intervals=prime}}
| |
| * 93edt
| |
| {{harmonics in equal | 93 | 3 | 1 | intervals=prime}}
| |
| * 203ed11
| |
| {{harmonics in equal | 203 | 11 | 1 | intervals=prime}}
| |
| * 294zpi (20.399c)
| |
| {{harmonics in cet | 20.399 | intervals=prime}}
| |
| * pure octaves 59edo
| |
| {{harmonics in equal | 59 | 2 | 1 | intervals=integer | columns=12}}
| |
| * 295zpi (20.342c)
| |
| {{harmonics in cet | 20.342 | intervals=prime}}
| |
| * 13-limit WE (20.320c)
| |
| {{harmonics in cet | 20.320 | intervals=prime}}
| |
| * 11-limit WE (20.310c)
| |
| {{harmonics in cet | 20.310 | intervals=prime}}
| |
| * 7-limit WE (20.301c)
| |
| {{harmonics in cet | 20.301 | intervals=prime}}
| |
| * 166ed7
| |
| {{harmonics in equal | 166 | 7 | 1 | intervals=prime}}
| |
| * 296zpi (20.282c)
| |
| {{harmonics in cet | 20.282 | intervals=prime}}
| |
| * 297zpi (20.229c)
| |
| {{harmonics in cet | 20.229 | intervals=prime}}
| |
| | |
| <br><br>
| |
| | |
| 64edo (narrow down ZPIs)
| |
| * 325zpi (18.868c)
| |
| {{harmonics in cet | 18.868 | intervals=prime}}
| |
| * 326zpi (18.816c)
| |
| {{harmonics in cet | 18.816 | intervals=prime}}
| |
| {{harmonics in equal | 47 | 5 | 3 | intervals=prime}}
| |
| * 221ed11
| |
| {{harmonics in equal | 221 | 11 | 1 | intervals=prime}}
| |
| * 327zpi (18.767c)
| |
| {{harmonics in cet | 18.767 | intervals=prime}}
| |
| * 11-limit WE (18.755c)
| |
| {{harmonics in cet | 18.755 | intervals=prime}}
| |
| * 13-limit WE (18.752c)
| |
| {{harmonics in cet | 18.752 | intervals=prime}}
| |
| * pure octaves 64edo
| |
| {{harmonics in equal | 64 | 2 | 1 | intervals=integer | columns=12}}
| |
| * 328zpi (18.721c)
| |
| {{harmonics in cet | 18.721 | intervals=prime}}
| |
| * 180ed7
| |
| {{harmonics in equal | 180 | 7 | 1 | intervals=prime}}
| |
| * 149ed5
| |
| {{harmonics in equal | 149 | 5 | 1 | intervals=prime}}
| |
| * 329zpi (18.672c)
| |
| {{harmonics in cet | 18.672 | intervals=prime}}
| |
| * 330zpi (18.630c)
| |
| {{harmonics in cet | 18.630 | intervals=prime}}
| |
|
| |
|
|
| |
|
Line 168: |
Line 77: |
|
| |
|
| {{harmonics in cet | 300 | intervals=prime}} | | {{harmonics in cet | 300 | intervals=prime}} |
| | |
| {{harmonics in equal | 140 | 12 | 1 | intervals=prime}} | | {{harmonics in equal | 140 | 12 | 1 | intervals=prime}} |
|
| |
|
Line 176: |
Line 86: |
|
| |
|
| ; High-priority | | ; High-priority |
|
| |
| 60edo (narrow down edonoi & ZPIs)
| |
| * 35edf
| |
| * 139ed5
| |
| * 301zpi (20.027c)
| |
| * 95edt
| |
| * 13-limit WE (20.013c) (155ed6 has octaves only 0.02{{c}} different)
| |
| * 215ed12
| |
| * 302zpi (19.962c)
| |
| * 208ed11 (ideal for catnip temperament)
| |
| * 303zpi (19.913c)
| |
|
| |
| 32edo
| |
| * 13-limit WE (37.481c)
| |
| * 11-limit WE (37.453c)
| |
| * 90ed7 (optimal for dual-5) (133zpi's octave only differs by 0.4{{c}})
| |
| * 51edt
| |
| * 134zpi (37.176c)
| |
| * 75ed5
| |
|
| |
| 33edo
| |
| * 76ed5
| |
| * 92ed7 (137zpi's octave differs by only 0.3{{c}})
| |
| * 52ed13
| |
| * 114ed11
| |
| * 138zpi (36.394c) (122ed13's octave differs by only 0.1{{c}})
| |
| * 13-limit WE (36.357c)
| |
| * 11-limit WE (36.349c)
| |
| * 93ed7 (optimised for dual-fifths)
| |
| * 77ed5 (139zpi's octave differs by only 0.2{{c}})
| |
| * 123ed13 / 1ed47/46 (identical within <0.1{{c}})
| |
| * 115ed11
| |
|
| |
|
| 39edo | | 39edo |
Line 213: |
Line 91: |
| * 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2{{c}}) | | * 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2{{c}}) |
| * 101ed6 (octave of 172zpi differs by only 0.4{{c}}) | | * 101ed6 (octave of 172zpi differs by only 0.4{{c}}) |
| * 2.3.5.11 WE (30.703c)
| |
| * 173zpi (30.672c) (octave of 62edt differs by only 0.2{{c}}) | | * 173zpi (30.672c) (octave of 62edt differs by only 0.2{{c}}) |
| * 110ed7 (octave of 145ed13 differs by only 0.1{{c}}) | | * 110ed7 (octave of 145ed13 differs by only 0.1{{c}}) |
| * 91ed5 | | * 91ed5 |
|
| |
| 42edo
| |
| *Good <27% rel err
| |
| *Okay <40% rel err
| |
| {{harmonics in equal | 42 | 2 | 1 | intervals=integer | columns=12}}
| |
| * 42ed257/128 (good 2.3.5.7; bad 11.13)
| |
| * 11ed6/5 (good 2.3.5; okay 7.11.13)
| |
| * 189zpi (28.689c) (good 2.5.13; okay 3.11; bad 7)
| |
| * 190zpi (28.572c)
| |
| * 13-limit WE (28.534c)
| |
| * 34ed7/4 (good 2.5.7.13; okay 3.11)
| |
| * 7-limit WE (28.484c) (good 2.3.5.11.13; bad 7)
| |
| * 191zpi (28.444c)
| |
| * 1ed123/121 (good 2.3.5.11; okay 13; bad 7)
| |
|
| |
|
| 45edo | | 45edo |
Line 241: |
Line 104: |
| * 71edt (octave identical to 155ed11 within 0.3{{c}}) | | * 71edt (octave identical to 155ed11 within 0.3{{c}}) |
|
| |
|
| 54edo (possibly narrow down edonoi) | | 54edo |
| {{harmonics in equal | 54 | 2 | 1 | intervals=integer | columns=12}} | | * 139ed6 (octave is identical to 262zpi within 0.2{{c}}) |
| * 126ed5 | | * 151ed7 |
| * 38ed5/3 (stretch, improves 3.5.7.11.13.17.19.23)
| | * 193ed12 |
| * 262zpi (22.313c) | |
| * 263zpi (22.243c) | | * 263zpi (22.243c) |
| * 13-limit WE (22.198c) | | * 13-limit WE (22.198c) (octave is identical to 187ed11 within 0.1{{c}}) |
| * 2.3.7.11.13 WE (22.180c)
| | * 264zpi (22.175c) (octave is identical to 194ed12 within 0.01{{c}}) |
| * 264zpi (22.175c) | |
| * 40ed5/3 (compress, improves 3.5.11.13.17.19 (not 7))
| |
| * 152ed7 | | * 152ed7 |
| * 86edt | | * 140ed6 |
| | * 126ed5 (octave is identical to 86edt within 0.1{{c}}) |
| | |
| | 64edo |
| | * 179ed7 (octave is identical to 326zpi within 0.3{{c}}) |
| | * 165ed6 |
| | * 229ed12 (octave is identical to 221ed11 within 0.1{{c}}) |
| | * 327zpi (18.767c) |
| | * 11-limit WE (18.755c) |
| | ''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}'' |
| | * 328zpi (18.721c) |
| | * 180ed7 |
| | * 230ed12 |
| | * 149ed5 |
| | |
| | 33edo (reduce # of edonoi) |
| | * 76ed5 |
| | * 92ed7 (137zpi's octave differs by only 0.3{{c}}) |
| | * 52ed13 |
| | * 114ed11 |
| | * 138zpi (36.394c) (122ed13's octave differs by only 0.1{{c}}) |
| | * 13-limit WE (36.357c) |
| | * 93ed7 (optimised for dual-fifths) |
| | * 77ed5 (139zpi's octave differs by only 0.2{{c}}) |
| | * 123ed13 / 1ed47/46 (identical within <0.1{{c}}) |
| | * 115ed11 |
| | |
| | 42edo (reduce # of edonoi) |
| | * 108ed6 (octave is identical to 97ed5 within 0.1{{c}}) |
| | * 189zpi (28.689c) |
| | * 150ed12 |
| | * 145ed11 |
| | ''190zpi's octave is within 0.05{{c}} of pure-octaves 42edo'' |
| | * 118ed7 |
| | * 13-limit WE (28.534c) |
| | * 151ed12 (octave is identical to 7-limit WE within 0.3{{c}}) |
| | * 109ed6 |
| | * 191zpi (28.444c) |
| | * 67edt |
|
| |
|
| 59edo (narrow down ZPIs) | | 59edo (reduce # of edonoi or zpi) |
| * (Nothing special abt these choices) | | * 152ed6 |
| {{harmonics in equal | 59 | 2 | 1 | intervals=integer | columns=12}}
| |
| * 93edt
| |
| * 203ed11
| |
| * 293zpi (20.454c)
| |
| * 294zpi (20.399c) | | * 294zpi (20.399c) |
| | * 211ed12 |
| * 295zpi (20.342c) | | * 295zpi (20.342c) |
| | ''pure octaves 59edo octave is identical to 137ed5 within 0.05{{c}}'' |
| * 13-limit WE (20.320c) | | * 13-limit WE (20.320c) |
| * 11-limit WE (20.310c)
| |
| * 7-limit WE (20.301c) | | * 7-limit WE (20.301c) |
| | * 166ed7 |
| | * 212ed12 |
| * 296zpi (20.282c) | | * 296zpi (20.282c) |
| * 297zpi (20.229c) | | * 153ed6 |
| * 166ed7
| |
| | |
| 64edo (narrow down ZPIs)
| |
| {{harmonics in equal | 64 | 2 | 1 | intervals=integer | columns=12}}
| |
| * 47ed5/3 (like 221ed11 but benefits & drawbacks both amplified)
| |
| * 221ed11
| |
| * 325zpi (18.868c)
| |
| * 326zpi (18.816c)
| |
| * 327zpi (18.767c)
| |
| * 11-limit WE (18.755c)
| |
| * 13-limit WE (18.752c)
| |
| * 328zpi (18.721c)
| |
| * 329zpi (18.672c)
| |
| * 330zpi (18.630c)
| |
| * 180ed7
| |
| * 149ed5
| |
|
| |
|
| ; Medium priority | | ; Medium priority |
Line 442: |
Line 323: |
| 37edo | | 37edo |
| {{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}} | | {{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}} |
| * Nearby edt, ed6, ed12 and/or edf
| |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional)
| |
| * 1-2 WE tunings
| |
| * Best nearby ZPI(s)
| |
|
| |
| 5edo
| |
| {{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}}
| |
| * Nearby edt, ed6, ed12 and/or edf
| |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional)
| |
| * 1-2 WE tunings
| |
| * Best nearby ZPI(s)
| |
|
| |
| 6edo
| |
| {{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}}
| |
| * Nearby edt, ed6, ed12 and/or edf | | * Nearby edt, ed6, ed12 and/or edf |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional) | | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
Line 498: |
Line 365: |
| 48edo | | 48edo |
| {{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}} | | {{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}} |
| | * Nearby edt, ed6, ed12 and/or edf |
| | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
| | * 1-2 WE tunings |
| | * Best nearby ZPI(s) |
| | |
| | 5edo |
| | {{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}} |
| | * Nearby edt, ed6, ed12 and/or edf |
| | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |
| | * 1-2 WE tunings |
| | * Best nearby ZPI(s) |
| | |
| | 6edo |
| | {{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}} |
| * Nearby edt, ed6, ed12 and/or edf | | * Nearby edt, ed6, ed12 and/or edf |
| * Nearby ed5, ed10, ed7 and/or ed11 (optional) | | * Nearby ed5, ed10, ed7 and/or ed11 (optional) |