User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
 
(123 intermediate revisions by the same user not shown)
Line 5: Line 5:
= Title1 =
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
{{main|23edo and octave stretching}}
38edo's approximation of [[JI]] can be improved by slightly [[octave stretch|stretching the octave]].


23edo is not typically taken seriously as a tuning except by those interested in extreme [[xenharmony]]. Its fifths are significantly flat, and is neighbors [[22edo]] and [[24edo]] generally get more attention.
What follows is a comparison of stretched-octave 38edo tunings.


However, when using a slightly [[stretched tuning|stretched octave]] of around 1216 [[cents]], 23edo looks much better, and it approximates the [[perfect fifth]] (and various other [[interval]]s involving the 5th, 7th, 11th, and 13th [[harmonic]]s) to within 18 cents or so. If we can tolerate errors around this size in [[12edo]], we can probably tolerate them in stretched-23 as well.
; 38edo
* Step size: 31.579{{c}}, octave size: 1200.00{{c}}
Pure-octaves 38edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|38|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 38edo}}
{{Harmonics in equal|38|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 38edo (continued)}}


Stretched 23edo is one of the best tunings to use for exploring the [[antidiatonic]] scale (and its 9-note extension, the [[superantidiatonic]] scale), since its fifth is more [[consonant]] and less "[[Wolf interval|wolfish]]" than fifths in other [[pelogic family]] temperaments.
; [[WE|38et, 13-limit WE tuning]]  
* Step size: 31.599{{c}}, octave size: 1200.77{{c}}
Stretching the octave of 38edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in cet|31.599|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 38et, 13-limit WE tuning}}
{{Harmonics in cet|31.599|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 38et, 13-limit WE tuning (continued)}}


What follows is a comparison of stretched- and compressed-octave 23edo tunings.
; [[ed5|88ed5]]
* Step size: 31.663{{c}}, octave size: 1203.18{{c}}
Stretching the octave of 38edo by around 3{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 88ed5 does this.
{{Harmonics in equal|88|5|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 88ed5}}
{{Harmonics in equal|88|5|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 88ed5 (continued)}}


; [[zpi|86zpi]]  
; [[zpi|166zpi]]  
* Step size: 51.653{{c}}, octave size: NNN{{c}}
* Step size: 31.671{{c}}, octave size: 1203.48{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
Stretching the octave of 38edo by around 3.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 166zpi does this.
{{Harmonics in cet|51.653|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|31.671|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 166zpi}}
{{Harmonics in cet|51.653|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}
{{Harmonics in cet|31.671|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 166zpi (continued)}}


; [[60ed6]]  
; [[60edt]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: 31.699{{c}}, octave size: 1204.57{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
Stretching the octave of 38edo by around 4.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 60edt does this.
{{Harmonics in equal|60|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|60|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 60edt}}
{{Harmonics in equal|60|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}
{{Harmonics in equal|60|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 60edt (continued)}}


; [[zpi|85zpi]]
= Title2 =
* Step size: 52.114{{c}}, octave size: NNN{{c}}
=== Lab ===
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|52.114|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|52.114|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}


; 23edo
Place holder
* Step size: NNN{{c}}, octave size: NNN{{c}}
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|23|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}}
{{Harmonics in equal|23|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}}


; [[WE|23et, 13-limit WE tuning]]
* Step size: 53.237{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this.
{{Harmonics in cet|53.237|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in cet|53.237|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}


; [[WE|23et, 2.3.5.13 WE tuning]]
<br><br><br><br><br>
* Step size: 53.447{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this.
{{Harmonics in cet|53.447|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in cet|53.447|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}


; [[59ed6]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|59|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|59|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


; [[zpi|84zpi]]
{{harmonics in cet | 300 | intervals=prime}}
* Step size: 52.615{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|52.615|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|52.615|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}


; [[36edt]]
{{harmonics in equal | 140 | 12 | 1 | intervals=prime}}
* Step size: NNN{{c}}, octave size: NNN{{c}}
_ing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|36|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|36|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


= Title2 =
=== Possible tunings to be used on each page ===
=== Possible tunings to be used on each page ===
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.
Line 77: Line 59:
; High-priority
; High-priority


23edo
118edo (choose ZPIS)
* Main: "23edo and octave stretching"
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}}
* 36edt
* 187edt
* 84zpi (52.615c)
* 69edf
* 59ed6
* 13-limit WE (10.171c)
* 2.3.5.13 WE (52.447c)
* Best nearby ZPI(s)
* 13-limit WE (52.237c)
* 85zpi (52.114c)
* 60ed6
* 86zpi (51.653c)
 
60edo (narrow down edonoi & ZPIs)
{{harmonics in equal|36|3|1|intervals=prime}}
{{harmonics in cet| 52.114 |intervals=prime}}
* 95edt
* 35edf
* 139ed5
* 155ed6
* 208ed11
* 215ed12
* 255ed19
* 272ed23 (great for catnip temperament, maybe there's a similar but simpler tuning w similar benefits?)
* 13-limit WE (20.013c)
* 299zpi (20.128c)
* 300zpi (20.093c)
* 301zpi (20.027c)
* 302zpi (19.962c)
* 303zpi (19.913c)
* 304zpi (19.869c)
 
; Medium priority
 
13edo
* Main: "13edo and optimal octave stretching"
* 2.5.11.13 WE (92.483c)
* 2.5.7.13 WE (92.804c)
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)
 
32edo (narrow down ZPIs)
* 90ed7
* 51edt
* 75ed5
* 1ed46/45
* 11-limit WE (37.453c)
* 13-limit WE (37.481c)
* 131zpi (37.862c)
* 132zpi (37.662c)
* 133zpi (37.418c)
* 134zpi (37.176c)
 
33edo (narrow down edonoi)
* 76ed5
* 92ed7
* 52edt
* 1ed47/46
* 114ed11
* 122ed13
* 93ed7
* 23edPhi
* 77ed5
* 123ed13
* 115ed11
* 11-limit WE (36.349c)
* 13-limit WE (36.357c)
* 137zpi (36.628c)
* 138zpi (36.394c)
* 139zpi (36.179c)
 
39edo (narrow down slightly)
* 62edt
* 101ed6
* 18ed11/8
* 2.3.5.11 WE (30.703c)
* 2.3.7.11.13 WE (30.787c)
* 13-limit WE (30.757c)
* 171zpi (30.973c)
* 172zpi (30.836c)
* 173zpi (30.672c)
 
42edo (narrow down slightly)
* 42ed257/128 (replace w something similar but simpler)
* AS123/121 (1ed123/121)
* 11ed6/5
* 34ed7/4
* 7-limit WE (28.484c)
* 13-limit WE (28.534c)
* 189zpi (28.689c)
* 190zpi (28.572c)
* 191zpi (28.444c)
 
45edo
* 126ed7
* 13ed11/9
* 7-limit WE (26.745c)
* 13-limit WE (26.695c)
* 207zpi (26.762)
* 208zpi (26.646)
* 209zpi (26.550)
 
54edo (narrow down slightly)
* 86edt
* 126ed5
* 152ed7
* 38ed5/3
* 40ed5/3
* 2.3.7.11.13 WE (22.180c)
* 13-limit WE (22.198c)
* 262zpi (22.313c)
* 263zpi (22.243c)
* 264zpi (22.175c)
 
59edo (narrow down ZPIs)
* 93edt
* 166ed7
* 203ed11
* 7-limit WE (20.301c)
* 11-limit WE (20.310c)
* 13-limit WE (20.320c)
* 293zpi (20.454c)
* 294zpi (20.399c)
* 295zpi (20.342c)
* 296zpi (20.282c)
* 297zpi (20.229c)
 
64edo (narrow down ZPIs)
* 149ed5
* 180ed7
* 222ed11
* 47ed5/3
* 11-limit WE (18.755c)
* 13-limit WE (18.752c)
* 325zpi (18.868c)
* 326zpi (18.816c)
* 327zpi (18.767c)
* 328zpi (18.721c)
* 329zpi (18.672c)
* 330zpi (18.630c)


103edo (narrow down edonoi, choose ZPIS)
103edo (narrow down edonoi, choose ZPIS)
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}}
* 163edt
* 163edt
* 239ed5
* 239ed5
Line 230: Line 81:


111edo (choose ZPIS)
111edo (choose ZPIS)
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 235: Line 87:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


118edo (choose ZPIS)
13edo
* 187edt
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}}
* 69edf
* Main: "13edo and optimal octave stretching"
* 13-limit WE (10.171c)
* 2.5.11.13 WE (92.483c)
* Best nearby ZPI(s)
* 2.5.7.13 WE (92.804c)
 
* 2.3 WE (91.405c) (good for opposite 7 mapping)
; Low priority
* 38zpi (92.531c)


104edo
104edo
Line 249: Line 101:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


125edo
; Medium-priority
 
25edo
{{harmonics in equal | 25 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 255: Line 110:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


145edo
26edo
{{harmonics in equal | 26 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 261: Line 117:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


152edo
29edo
* 241edt
{{harmonics in equal | 29 | 2 | 1 | intervals=integer | columns=12}}
* 13-limit WE (7.894c)
* Best nearby ZPI(s)
 
159edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 272: Line 124:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


166edo
30edo
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 278: Line 131:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


182edo
35edo
{{harmonics in equal | 35 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 284: Line 138:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


198edo
36edo
{{harmonics in equal | 36 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 290: Line 145:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


212edo
37edo
{{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 296: Line 152:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


243edo
15edo
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 302: Line 159:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


247edo
9edo
{{harmonics in equal | 9 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 308: Line 166:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


; Optional
18edo
 
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}}
25edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 316: Line 173:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


26edo
24edo
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(


29edo
48edo
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 328: Line 187:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


30edo
5edo
{{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 334: Line 194:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


34edo
6edo
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)s)


35edo
10edo
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 346: Line 208:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


36edo
11edo
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 352: Line 215:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


37edo
34edo
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 358: Line 222:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


5edo
; Low priority
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* Best nearby ZPI(s)


6edo
125edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 370: Line 230:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


9edo
145edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 376: Line 236:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


10edo
152edo
* Nearby edt, ed6, ed12 and/or edf
* 241edt
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 13-limit WE (7.894c)
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)


11edo
159edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 388: Line 247:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


15edo
166edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 394: Line 253:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


18edo
182edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 400: Line 259:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


48edo
198edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 406: Line 265:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


20edo
212edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 412: Line 271:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


24edo
243edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 418: Line 277:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


28edo
247edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)