User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
 
(106 intermediate revisions by the same user not shown)
Line 5: Line 5:
= Title1 =
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
What follows is a comparison of stretched- and compressed-octave 42edo tunings.


{{Harmonics in equal|60|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 99edo}}
; [[ed6|108ed6]]
{{Harmonics in equal|60|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 99edo (continued)}}
* Step size: NNN{{c}}, octave size: 1206.3{{c}}
Stretching the octave of 42edo by around 6{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 108ed6 does this. So does the tuning [[97ed5]] whose octave differs by only 0.1{{c}}.
{{Harmonics in equal|108|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 108ed6}}
{{Harmonics in equal|108|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 108ed6 (continued)}}


{{Harmonics in equal|103|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 99edo}}
; [[zpi|189zpi]]
{{Harmonics in equal|103|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 99edo (continued)}}
* Step size: 28.689{{c}}, octave size: 1204.9{{c}}
Stretching the octave of 42edo by around 5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 189zpi does this.
{{Harmonics in cet|28.689|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 189zpi}}
{{Harmonics in cet|28.689|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 189zpi (continued)}}


= Title2 =
; [[ed12|150ed12]]
=== Possible tunings to be used on each page ===
* Step size: NNN{{c}}, octave size: 1204.5{{c}}
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.
Stretcing the octave of 42edo by around 4.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 150ed12 does this.
{{Harmonics in equal|150|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 150ed12}}
{{Harmonics in equal|150|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 150ed12 (continued)}}
 
; [[equal tuning|145ed11]]
* Step size: NNN{{c}}, octave size: 1202.5{{c}}
Stretching the octave of 42edo by around 2.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 145ed11 does this.
{{Harmonics in equal|145|11|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 145ed11}}
{{Harmonics in equal|145|11|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 145ed11 (continued)}}
 
; 42edo
* Step size: NNN{{c}}, octave size: 1200.0{{c}}
Pure-octaves 42edo approximates all harmonics up to 16 within NNN{{c}}. The tuning [[zpi|190zpi]] is almost exactly the same as pure-octaves 42edo, its octave differing by less than 0.05{{c}}.
{{Harmonics in equal|42|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42edo}}
{{Harmonics in equal|42|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42edo (continued)}}
 
; [[ed7|118ed7]]
* Step size: NNN{{c}}, octave size: 1199.1{{c}}
Compressing the octave of 42edo by around 1{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 118ed7 does this.
{{Harmonics in equal|118|7|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 118ed7}}
{{Harmonics in equal|118|7|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 118ed7 (continued)}}
 
; [[WE|42et, 13-limit WE tuning]]
* Step size: 28.534{{c}}, octave size: 1198.4{{c}}
Compressing the octave of 42edo by around 1.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in cet|28.534|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 42et, 13-limit WE tuning}}
{{Harmonics in cet|28.534|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 42et, 13-limit WE tuning (continued)}}
 
; [[ed12|151ed12]]
* Step size: NNN{{c}}, octave size: 1196.6{{c}}
Compressing the octave of 42edo by around 3.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 151ed12 does this. So do the 7-limit [[WE]] and [[TE]] tunings of 42et, whose octaves are within 0.3{{c}} of 151ed12.
{{Harmonics in equal|151|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 151ed12}}
{{Harmonics in equal|151|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 151ed12 (continued)}}


(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)
; [[ed6|109ed6]]
* Step size: NNN{{c}}, octave size: 1195.2{{c}}
Compressing the octave of 42edo by around 5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 109ed6 does this.
{{Harmonics in equal|109|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 109ed6}}
{{Harmonics in equal|109|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 109ed6 (continued)}}


; High-priority
; [[zpi|191zpi]]
* Step size: 28.444{{c}}, octave size: 1194.6{{c}}
Compressing the octave of 42edo by around 5.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 191zpi does this.
{{Harmonics in cet|28.444|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 191zpi}}
{{Harmonics in cet|28.444|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 191zpi (continued)}}


23edo
; [[67edt]]
* Main: "23edo and octave stretching"
* Step size: NNN{{c}}, octave size: 1192.3{{c}}
* 36edt
Compressing the octave of 42edo by around 7.5{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 67edt does this.
* 84zpi (52.615c)
{{Harmonics in equal|67|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 67edt}}
* 59ed6
{{Harmonics in equal|67|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 67edt (continued)}}
* 2.3.5.13 WE (52.447c)
* 13-limit WE (52.237c)
* 85zpi (52.114c)
* 60ed6
* 86zpi (51.653c)


60edo (narrow down edonoi & ZPIs)
= Title2 =
{{harmonics in equal|36|3|1|intervals=prime}}
=== Lab ===
{{harmonics in cet| 52.114 |intervals=prime}}
* 95edt
* 35edf
* 139ed5
* 155ed6
* 208ed11
* 215ed12
* 255ed19
* 272ed23 (great for catnip temperament, maybe there's a similar but simpler tuning w similar benefits?)
* 13-limit WE (20.013c)
* 299zpi (20.128c)
* 300zpi (20.093c)
* 301zpi (20.027c)
* 302zpi (19.962c)
* 303zpi (19.913c)
* 304zpi (19.869c)


; Medium priority
Place holder


13edo
* Main: "13edo and optimal octave stretching"
* 2.5.11.13 WE (92.483c)
* 2.5.7.13 WE (92.804c)
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)


32edo (narrow down ZPIs)
<br><br><br><br><br>
* 90ed7
* 51edt
* 75ed5
* 1ed46/45
* 11-limit WE (37.453c)
* 13-limit WE (37.481c)
* 131zpi (37.862c)
* 132zpi (37.662c)
* 133zpi (37.418c)
* 134zpi (37.176c)


33edo (narrow down edonoi)
* 76ed5
* 92ed7
* 52edt
* 1ed47/46
* 114ed11
* 122ed13
* 93ed7
* 23edPhi
* 77ed5
* 123ed13
* 115ed11
* 11-limit WE (36.349c)
* 13-limit WE (36.357c)
* 137zpi (36.628c)
* 138zpi (36.394c)
* 139zpi (36.179c)


39edo (narrow down slightly)
{{harmonics in cet | 300 | intervals=prime}}
* 62edt
* 101ed6
* 18ed11/8
* 2.3.5.11 WE (30.703c)
* 2.3.7.11.13 WE (30.787c)
* 13-limit WE (30.757c)
* 171zpi (30.973c)
* 172zpi (30.836c)
* 173zpi (30.672c)


42edo (narrow down slightly)
{{harmonics in equal | 140 | 12 | 1 | intervals=prime}}
* 42ed257/128 (replace w something similar but simpler)
* AS123/121 (1ed123/121)
* 11ed6/5
* 34ed7/4
* 7-limit WE (28.484c)
* 13-limit WE (28.534c)
* 189zpi (28.689c)
* 190zpi (28.572c)
* 191zpi (28.444c)


45edo
=== Possible tunings to be used on each page ===
* 126ed7
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.
* 13ed11/9
* 7-limit WE (26.745c)
* 13-limit WE (26.695c)
* 207zpi (26.762)
* 208zpi (26.646)
* 209zpi (26.550)


54edo (narrow down slightly)
(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)
* 86edt
 
* 126ed5
; High-priority
 
54edo
* 139ed6 (octave is identical to 262zpi within 0.2{{c}})
* 151ed7
* 193ed12
* 263zpi (22.243c)
* 13-limit WE (22.198c)  (octave is identical to 187ed11 within 0.1{{c}})
* 264zpi (22.175c) (octave is identical to 194ed12 within 0.01{{c}})
* 152ed7
* 152ed7
* 38ed5/3
* 140ed6
* 40ed5/3
* 126ed5 (octave is identical to 86edt within 0.1{{c}})
* 2.3.7.11.13 WE (22.180c)
 
* 13-limit WE (22.198c)
64edo
* 262zpi (22.313c)
* 179ed7 (octave is identical to 326zpi within 0.3{{c}})
* 263zpi (22.243c)
* 165ed6
* 264zpi (22.175c)
* 229ed12 (octave is identical to 221ed11 within 0.1{{c}})
* 327zpi (18.767c)
* 11-limit WE (18.755c)
''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}''
* 328zpi (18.721c)
* 180ed7
* 230ed12
* 149ed5


59edo (narrow down ZPIs)
59edo (reduce # of edonoi or zpi)
* 93edt
* 152ed6
* 166ed7
* 203ed11
* 7-limit WE (20.301c)
* 11-limit WE (20.310c)
* 13-limit WE (20.320c)
* 293zpi (20.454c)
* 294zpi (20.399c)
* 294zpi (20.399c)
* 211ed12
* 295zpi (20.342c)
* 295zpi (20.342c)
''pure octaves 59edo octave is identical to 137ed5 within 0.05{{c}}''
* 13-limit WE (20.320c)
* 7-limit WE (20.301c)
* 166ed7
* 212ed12
* 296zpi (20.282c)
* 296zpi (20.282c)
* 297zpi (20.229c)
* 153ed6


64edo (narrow down ZPIs)
; Medium priority
* 149ed5
* 180ed7
* 222ed11
* 47ed5/3
* 11-limit WE (18.755c)
* 13-limit WE (18.752c)
* 325zpi (18.868c)
* 326zpi (18.816c)
* 327zpi (18.767c)
* 328zpi (18.721c)
* 329zpi (18.672c)
* 330zpi (18.630c)


103edo (narrow down edonoi, choose ZPIS)
25edo
* 163edt
{{harmonics in equal | 25 | 2 | 1 | intervals=integer | columns=12}}
* 239ed5
* 266ed6
* 289ed7
* 356ed11
* 369ed12
* 381ed13
* 421ed17
* 466ed23
* 13-limit WE (11.658c)
* Best nearby ZPI(s)
 
111edo (choose ZPIS)
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 178: Line 138:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


118edo (choose ZPIS)
26edo
* 187edt
{{harmonics in equal | 26 | 2 | 1 | intervals=integer | columns=12}}
* 69edf
* 13-limit WE (10.171c)
* Best nearby ZPI(s)
 
; Low priority
 
104edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 192: Line 145:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


125edo
29edo
{{harmonics in equal | 29 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 198: Line 152:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


145edo
30edo
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 204: Line 159:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


152edo
34edo
* 241edt
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}}
* 13-limit WE (7.894c)
* Best nearby ZPI(s)
 
159edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 215: Line 166:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


166edo
35edo
{{harmonics in equal | 35 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 221: Line 173:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


182edo
36edo
{{harmonics in equal | 36 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 227: Line 180:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


198edo
37edo
{{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 233: Line 187:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


212edo
38edo
{{harmonics in equal | 38 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 239: Line 194:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


243edo
9edo
{{harmonics in equal | 9 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 245: Line 201:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


247edo
10edo
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 251: Line 208:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


; Optional
11edo
 
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}}
25edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 259: Line 215:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


26edo
15edo
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 265: Line 222:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


29edo
18edo
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 271: Line 229:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


30edo
48edo
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 277: Line 236:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


34edo
24edo
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 283: Line 243:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


35edo
5edo
{{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 289: Line 250:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


36edo
6edo
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 295: Line 257:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


37edo
13edo
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}}
* Main: "13edo and optimal octave stretching"
* 2.5.11.13 WE (92.483c)
* 2.5.7.13 WE (92.804c)
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)
 
118edo (choose ZPIS)
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}}
* 187edt
* 69edf
* 13-limit WE (10.171c)
* Best nearby ZPI(s)
 
103edo (narrow down edonoi, choose ZPIS)
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}}
* 163edt
* 239ed5
* 266ed6
* 289ed7
* 356ed11
* 369ed12
* 381ed13
* 421ed17
* 466ed23
* 13-limit WE (11.658c)
* Best nearby ZPI(s)
 
111edo (choose ZPIS)
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 301: Line 293:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


5edo
; Low priority
 
104edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 307: Line 301:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


6edo
125edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 313: Line 307:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


9edo
145edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 319: Line 313:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


10edo
152edo
* Nearby edt, ed6, ed12 and/or edf
* 241edt
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 13-limit WE (7.894c)
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)


11edo
159edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 331: Line 324:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


15edo
166edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 337: Line 330:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


18edo
182edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 343: Line 336:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


48edo
198edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 349: Line 342:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


20edo
212edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 355: Line 348:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


24edo
243edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 361: Line 354:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


28edo
247edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)