User:BudjarnLambeth/Sandbox2: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
 
(80 intermediate revisions by the same user not shown)
Line 1: Line 1:
Quick link
[[User:BudjarnLambeth/Draft related tunings section]]
= Title1 =
= Title1 =
== Octave stretch or compression ==
== Octave stretch or compression ==
Having a flat tendency, 16et is best tuned with [[stretched octave]]s, which improve the accuracy of wide-voiced JI chords and [[rooted]] harmonics especially on inharmonic timbres such as bells and gamelans, with [[25edt]], [[41ed6]], and [[57ed12]] being good options.
{{main|23edo and octave stretching}}
 
23edo is not typically taken seriously as a tuning except by those interested in extreme [[xenharmony]]. Its fifths are significantly flat, and is neighbors [[22edo]] and [[24edo]] generally get more attention.


What follows is a comparison of stretched- and compressed-octave 16edo tunings.
However, when using a slightly [[stretched tuning|stretched octave]] of around 1216 [[cents]], 23edo looks much better, and it approximates the [[perfect fifth]] (and various other [[interval]]s involving the 5th, 7th, 11th, and 13th [[harmonic]]s) to within 18 cents or so. If we can tolerate errors around this size in [[12edo]], we can probably tolerate them in stretched-23 as well.


; 16edo
Stretched 23edo is one of the best tunings to use for exploring the [[antidiatonic]] scale since its fifth is more [[consonant]] and less "[[Wolf interval|wolfish]]" than fifths in other [[pelogic family]] temperaments.
* Step size: 75.000{{c}}, octave size: 1200.0{{c}}
Pure-octaves 16edo approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|16|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16edo}}
{{Harmonics in equal|16|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16edo (continued)}}


; [[WE|16et, 2.5.7.13 WE tuning]]
What follows is a comparison of stretched- and compressed-octave 23edo tunings.
* Step size: 75.105{{c}}, octave size: NNN{{c}}
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 2.5.7.13 WE tuning and 2.5.7.13 [[TE]] tuning both do this.
{{Harmonics in cet|75.105|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16et, 2.5.7.13 WE tuning}}
{{Harmonics in cet|75.105|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16et, 2.5.7.13 WE tuning (continued)}}


; [[zpi|15zpi]]  
; [[zpi|86zpi]]  
* Step size: 75.262{{c}}, octave size: NNN{{c}}
* Step size: 51.653{{c}}, octave size: 1188.0{{c}}
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 15zpi does this.
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|75.262|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 15zpi}}
{{Harmonics in cet|51.653|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|75.262|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 15zpi (continued)}}
{{Harmonics in cet|51.653|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}


; [[WE|16et, 13-limit WE tuning]]  
; [[60ed6]]  
* Step size: 75.315{{c}}, octave size: NNN{{c}}
* Step size: 51.700{{c}}, octave size: 1189.1{{c}}
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 60ed6 does this. So does the tuning [[equal tuning|105ed23]] whose octave is identical within 0.01{{c}}.
{{Harmonics in cet|75.315|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 16et, 13-limit WE tuning}}
{{Harmonics in equal|60|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in cet|75.315|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 16et, 13-limit WE tuning (continued)}}
{{Harmonics in equal|60|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


; [[57ed12]]  
; [[zpi|85zpi]]  
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: 52.114{{c}}, octave size: 1198.6{{c}}
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 57ed12 does this.
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 85zpi does this. So does the tuning [[ed9|73ed9]] whose octave is identical within 0.02{{c}}.
{{Harmonics in equal|57|12|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 57ed12}}
{{Harmonics in cet|52.114|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in equal|57|12|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 57ed12 (continued)}}
{{Harmonics in cet|52.114|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}


; [[41ed6]]
; 23edo
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: NNN{{c}}, octave size: 1200.0{{c}}  
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 41ed6 does this.
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}.
{{Harmonics in equal|41|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 41ed6}}
{{Harmonics in equal|23|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}}
{{Harmonics in equal|41|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 41ed6 (continued)}}
{{Harmonics in equal|23|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}}


; [[25edt]]  
; [[WE|23et, 13-limit WE tuning]]
* Step size: NNN{{c}}, octave size: NNN{{c}}
* Step size: 52.237{{c}}, octave size: 1201.5{{c}}
Stretching the octave of 16edo by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 25edt does this.
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this.
{{Harmonics in equal|25|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 25edt}}
{{Harmonics in cet|52.237|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in equal|25|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 25edt (continued)}}
{{Harmonics in cet|52.237|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}
 
; [[WE|23et, 2.3.5.13 WE tuning]]  
* Step size: 52.447{{c}}, octave size: 1206.3{{c}}
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. So does the tuning [[ed10|76ed10]] whose octave is identical within 0.01{{c}}.
{{Harmonics in cet|52.447|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}}
{{Harmonics in cet|52.447|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}}
 
; [[59ed6]]
* Step size: 52.575{{c}}, octave size: 1209.2{{c}}
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 59ed6 does this. So does the tuning [[53ed5]] whose octave is identical within 0.01{{c}}.
{{Harmonics in equal|59|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|59|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}
 
; [[zpi|84zpi]]
* Step size: 52.615{{c}}, octave size: 1210.1{{c}}
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this.
{{Harmonics in cet|52.615|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}}
{{Harmonics in cet|52.615|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}}
 
; [[36edt]]
* Step size: 52.832{{c}}, octave size: 1215.1{{c}}
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|36|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|36|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}
 
; [[84ed13]]
* Step size: 52.863{{c}}, octave size: 1215.9{{c}}
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this.
{{Harmonics in equal|84|13|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}}
{{Harmonics in equal|84|13|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}}


= Title2 =
= Title2 =
=== Possible tunings to be used on each page ===
=== Lab ===
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.
 
Place holder
 


(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)
<br><br><br><br><br>


; High-priority


13edo
{{harmonics in cet | 300 | intervals=prime}}
* Main: "13edo and optimal octave stretching"
* 2.5.11.13 WE (92.483c)
* 2.5.7.13 WE (92.804c)
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)


14edo
{{harmonics in equal | 140 | 12 | 1 | intervals=prime}}
* 22edt
* 36ed6
* 11-limit WE (85.842c)
* 13-limit WE (85.759c)
* 42zpi (86.329c)


16edo
=== Possible tunings to be used on each page ===
* 25edt
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming.
* 41ed6
* 57ed12
* 2.5.7.13 WE (75.105c)
* 13-limit WE (75.315c)
* 15zpi (75.262c)


99edo
(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it)
* 157edt
* 256ed6
* 7-limit WE (12.117c)
* 13-limit WE (12.123c)
* 567zpi (12.138c)
* 568zpi (12.115c)


23edo (narrow down edonoi & ZPIs)
; High-priority
* Main: "23edo and octave stretching"
* 36edt
* 59ed6
* 60ed6
* 68ed8
* 11ed7/5
* 1ed33/32
* 2.3.5.13 WE (52.447c)
* 2.7.11 WE (51.962c)
* 13-limit WE (52.237c)
* 83zpi (53.105c)
* 84zpi (52.615c)
* 85zpi (52.114c)
* 86zpi (51.653c)
* 87zpi (51.201c)


60edo (narrow down edonoi & ZPIs)
60edo (narrow down edonoi & ZPIs)
* 95edt
* 35edf
* 139ed5
* 139ed5
* 155ed6
* 208ed11
* 255ed19
* 272ed23 (great for catnip temperament)
* 13-limit WE (20.013c)
* 299zpi (20.128c)
* 300zpi (20.093c)
* 301zpi (20.027c)
* 301zpi (20.027c)
* 95edt
* 13-limit WE (20.013c) (155ed6 has octaves only 0.02{{c}} different)
* 215ed12
* 302zpi (19.962c)
* 302zpi (19.962c)
* 208ed11 (ideal for catnip temperament)
* 303zpi (19.913c)
* 303zpi (19.913c)
* 304zpi (19.869c)


; Medium priority
32edo
 
* 13-limit WE (37.481c)
32edo (narrow down ZPIs)
* 11-limit WE (37.453c)
* 90ed7
* 90ed7 (optimal for dual-5) (133zpi's octave only differs by 0.4{{c}})
* 51edt
* 51edt
* 134zpi (37.176c)
* 75ed5
* 75ed5
* 1ed46/45
* 11-limit WE (37.453c)
* 13-limit WE (37.481c)
* 131zpi (37.862c)
* 132zpi (37.662c)
* 133zpi (37.418c)
* 134zpi (37.176c)


33edo (narrow down edonoi)
33edo
* 76ed5
* 76ed5
* 92ed7
* 92ed7 (137zpi's octave differs by only 0.3{{c}})
* 52edt
* 52ed13
* 1ed47/46
* 114ed11
* 114ed11
* 122ed13
* 138zpi (36.394c) (122ed13's octave differs by only 0.1{{c}})
* 93ed7
* 13-limit WE (36.357c)
* 23edPhi
* 93ed7 (optimised for dual-fifths)
* 77ed5
* 77ed5 (139zpi's octave differs by only 0.2{{c}})
* 123ed13
* 123ed13 / 1ed47/46 (identical within <0.1{{c}})
* 115ed11
* 115ed11
* 11-limit WE (36.349c)
* 13-limit WE (36.357c)
* 137zpi (36.628c)
* 138zpi (36.394c)
* 139zpi (36.179c)


39edo
39edo
* 62edt
* 171zpi (30.973c) (optimised for dual-fifths use)
* 101ed6
* 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2{{c}})
* 18ed11/8
* 101ed6 (octave of 172zpi differs by only 0.4{{c}})
* 2.3.5.11 WE (30.703c)
* 173zpi (30.672c) (octave of 62edt differs by only 0.2{{c}})
* 2.3.7.11.13 WE (30.787c)
* 110ed7 (octave of 145ed13 differs by only 0.1{{c}})
* 13-limit WE (30.757c)
* 91ed5
* 171zpi (30.973c)
* 172zpi (30.836c)
* 173zpi (30.672c)


42edo
42edo
* 42ed257/128 (replace w something similar but simpler)
* 108ed6 (octave is identical to 97ed5 within 0.1{{c}})
* AS123/121 (1ed123/121)
* 189zpi (28.689c)
* 11ed6/5
* 150ed12
* 34ed7/4
* 145ed11
* 7-limit WE (28.484c)
''190zpi's octave is within 0.05{{c}} of pure-octaves 42edo''
* 118ed7
* 13-limit WE (28.534c)
* 13-limit WE (28.534c)
* 189zpi (28.689c)
* 151ed12 (octave is identical to 7-limit WE within 0.3{{c}})
* 190zpi (28.572c)
* 109ed6
* 191zpi (28.444c)
* 191zpi (28.444c)
* 67edt


45edo
45edo
* 126ed7
* 209zpi (26.550)
* 13ed11/9
* 13-limit WE (26.695c)
* 161ed12
* 116ed6 (octave identical to 126ed7 within 0.1{{c}})
* 7-limit WE (26.745c)
* 7-limit WE (26.745c)
* 13-limit WE (26.695c)
* 207zpi (26.762)
* 207zpi (26.762)
* 208zpi (26.646)
* 71edt (octave identical to 155ed11 within 0.3{{c}})
* 209zpi (26.550)


54edo
54edo
* 86edt
* 139ed6 (octave is identical to 262zpi within 0.2{{c}})
* 126ed5
* 151ed7
* 193ed12
* 263zpi (22.243c)
* 13-limit WE (22.198c)  (octave is identical to 187ed11 within 0.1{{c}})
* 264zpi (22.175c) (octave is identical to 194ed12 within 0.01{{c}})
* 152ed7
* 152ed7
* 38ed5/3
* 140ed6
* 40ed5/3
* 126ed5 (octave is identical to 86edt within 0.1{{c}})
* 2.3.7.11.13 WE (22.180c)
* 13-limit WE (22.198c)
* 262zpi (22.313c)
* 263zpi (22.243c)
* 264zpi (22.175c)


59edo (narrow down ZPIs)
59edo
* 93edt
* 152ed6
* 166ed7
* 203ed11
* 7-limit WE (20.301c)
* 11-limit WE (20.310c)
* 13-limit WE (20.320c)
* 293zpi (20.454c)
* 294zpi (20.399c)
* 294zpi (20.399c)
* 211ed12
* 295zpi (20.342c)
* 295zpi (20.342c)
''pure octaves 59edo octave is identical to 137ed5 within 0.05{{c}}''
* 13-limit WE (20.320c)
* 7-limit WE (20.301c)
* 166ed7
* 212ed12
* 296zpi (20.282c)
* 296zpi (20.282c)
* 297zpi (20.229c)
* 153ed6


64edo (narrow down ZPIs)
64edo
* 149ed5
* 179ed7 (octave is identical to 326zpi within 0.3{{c}})
* 180ed7
* 165ed6
* 222ed11
* 229ed12 (octave is identical to 221ed11 within 0.1{{c}})
* 47ed5/3
* 327zpi (18.767c)
* 11-limit WE (18.755c)
* 11-limit WE (18.755c)
* 13-limit WE (18.752c)
''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}''
* 325zpi (18.868c)
* 326zpi (18.816c)
* 327zpi (18.767c)
* 328zpi (18.721c)
* 328zpi (18.721c)
* 329zpi (18.672c)
* 180ed7
* 330zpi (18.630c)
* 230ed12
* 149ed5
 
; Medium priority
 
118edo (choose ZPIS)
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}}
* 187edt
* 69edf
* 13-limit WE (10.171c)
* Best nearby ZPI(s)
 
13edo
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}}
* Main: "13edo and optimal octave stretching"
* 2.5.11.13 WE (92.483c)
* 2.5.7.13 WE (92.804c)
* 2.3 WE (91.405c) (good for opposite 7 mapping)
* 38zpi (92.531c)


103edo (narrow down edonoi, choose ZPIS)
103edo (narrow down edonoi, choose ZPIS)
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}}
* 163edt
* 163edt
* 239ed5
* 239ed5
* 266ed6
* 289ed7
* 289ed7
* 356ed11
* 356ed11
* 369ed12
* 381ed13
* 381ed13
* 421ed17
* 421ed17
Line 230: Line 223:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


118edo (choose ZPIS)
111edo (choose ZPIS)
* 187edt
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}}
* 69edf
* Nearby edt, ed6, ed12 and/or edf
* 13-limit WE (10.171c)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Best nearby ZPI(s)
* 1-2 WE tunings
 
152edo (choose ZPIS)
* 241edt
* 13-limit WE (7.894c)
* Best nearby ZPI(s)
* Best nearby ZPI(s)


; Low priority
; Low priority


111edo
104edo
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 259: Line 248:
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
152edo
* 241edt
* 13-limit WE (7.894c)
* Best nearby ZPI(s)
* Best nearby ZPI(s)


Line 306: Line 300:


25edo
25edo
{{harmonics in equal | 25 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 312: Line 307:


26edo
26edo
{{harmonics in equal | 26 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 318: Line 314:


29edo
29edo
{{harmonics in equal | 29 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 324: Line 321:


30edo
30edo
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 330: Line 328:


34edo
34edo
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 336: Line 335:


35edo
35edo
{{harmonics in equal | 35 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 342: Line 342:


36edo
36edo
{{harmonics in equal | 36 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 348: Line 349:


37edo
37edo
{{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 353: Line 355:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


5edo
9edo
{{harmonics in equal | 9 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 359: Line 362:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


6edo
10edo
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 365: Line 369:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


9edo
11edo
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 371: Line 376:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


10edo
15edo
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 377: Line 383:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


11edo
18edo
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 383: Line 390:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


15edo
48edo
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 389: Line 397:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


18edo
5edo
{{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 395: Line 404:
* Best nearby ZPI(s)
* Best nearby ZPI(s)


48edo
6edo
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 402: Line 412:


20edo
20edo
{{harmonics in equal | 20 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 408: Line 419:


24edo
24edo
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
Line 414: Line 426:


28edo
28edo
{{harmonics in equal | 28 | 2 | 1 | intervals=integer | columns=12}}
* Nearby edt, ed6, ed12 and/or edf
* Nearby edt, ed6, ed12 and/or edf
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* Nearby ed5, ed10, ed7 and/or ed11 (optional)
* 1-2 WE tunings
* 1-2 WE tunings
* Best nearby ZPI(s)
* Best nearby ZPI(s)