User:BudjarnLambeth/Sandbox2: Difference between revisions
m →Lab |
|||
(75 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Quick link | |||
[[User:BudjarnLambeth/Draft related tunings section]] | |||
= Title1 = | = Title1 = | ||
{{Harmonics in equal| | == Octave stretch or compression == | ||
{{Harmonics in equal| | {{main|23edo and octave stretching}} | ||
{{Harmonics in equal| | |||
{{Harmonics in equal| | 23edo is not typically taken seriously as a tuning except by those interested in extreme [[xenharmony]]. Its fifths are significantly flat, and is neighbors [[22edo]] and [[24edo]] generally get more attention. | ||
However, when using a slightly [[stretched tuning|stretched octave]] of around 1216 [[cents]], 23edo looks much better, and it approximates the [[perfect fifth]] (and various other [[interval]]s involving the 5th, 7th, 11th, and 13th [[harmonic]]s) to within 18 cents or so. If we can tolerate errors around this size in [[12edo]], we can probably tolerate them in stretched-23 as well. | |||
Stretched 23edo is one of the best tunings to use for exploring the [[antidiatonic]] scale since its fifth is more [[consonant]] and less "[[Wolf interval|wolfish]]" than fifths in other [[pelogic family]] temperaments. | |||
What follows is a comparison of stretched- and compressed-octave 23edo tunings. | |||
; [[zpi|86zpi]] | |||
* Step size: 51.653{{c}}, octave size: 1188.0{{c}} | |||
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this. | |||
{{Harmonics in cet|51.653|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | |||
{{Harmonics in cet|51.653|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} | |||
; [[60ed6]] | |||
* Step size: 51.700{{c}}, octave size: 1189.1{{c}} | |||
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 60ed6 does this. So does the tuning [[equal tuning|105ed23]] whose octave is identical within 0.01{{c}}. | |||
{{Harmonics in equal|60|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | |||
{{Harmonics in equal|60|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | |||
; [[zpi|85zpi]] | |||
* Step size: 52.114{{c}}, octave size: 1198.6{{c}} | |||
Compressing the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 85zpi does this. So does the tuning [[ed9|73ed9]] whose octave is identical within 0.02{{c}}. | |||
{{Harmonics in cet|52.114|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | |||
{{Harmonics in cet|52.114|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} | |||
; 23edo | |||
* Step size: NNN{{c}}, octave size: 1200.0{{c}} | |||
Pure-octaves EDONAME approximates all harmonics up to 16 within NNN{{c}}. | |||
{{Harmonics in equal|23|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONAME}} | |||
{{Harmonics in equal|23|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONAME (continued)}} | |||
; [[WE|23et, 13-limit WE tuning]] | |||
* Step size: 52.237{{c}}, octave size: 1201.5{{c}} | |||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. | |||
{{Harmonics in cet|52.237|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} | |||
{{Harmonics in cet|52.237|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} | |||
; [[WE|23et, 2.3.5.13 WE tuning]] | |||
* Step size: 52.447{{c}}, octave size: 1206.3{{c}} | |||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. Its SUBGROUP WE tuning and SUBGROUP [[TE]] tuning both do this. So does the tuning [[ed10|76ed10]] whose octave is identical within 0.01{{c}}. | |||
{{Harmonics in cet|52.447|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning}} | |||
{{Harmonics in cet|52.447|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ETNAME, SUBGROUP WE tuning (continued)}} | |||
; [[59ed6]] | |||
* Step size: 52.575{{c}}, octave size: 1209.2{{c}} | |||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning 59ed6 does this. So does the tuning [[53ed5]] whose octave is identical within 0.01{{c}}. | |||
{{Harmonics in equal|59|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | |||
{{Harmonics in equal|59|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | |||
; [[zpi|84zpi]] | |||
* Step size: 52.615{{c}}, octave size: 1210.1{{c}} | |||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning ZPINAME does this. | |||
{{Harmonics in cet|52.615|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in ZPINAME}} | |||
{{Harmonics in cet|52.615|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in ZPINAME (continued)}} | |||
; [[36edt]] | |||
* Step size: 52.832{{c}}, octave size: 1215.1{{c}} | |||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | |||
{{Harmonics in equal|36|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | |||
{{Harmonics in equal|36|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | |||
; [[84ed13]] | |||
* Step size: 52.863{{c}}, octave size: 1215.9{{c}} | |||
Stretching the octave of EDONAME by around NNN{{c}} results in improved primes NNN, but worse primes NNN. This approximates all harmonics up to 16 within NNN{{c}}. The tuning EDONOI does this. | |||
{{Harmonics in equal|84|13|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in EDONOI}} | |||
{{Harmonics in equal|84|13|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in EDONOI (continued)}} | |||
= Title2 = | = Title2 = | ||
== | === Lab === | ||
42edo | |||
*Good <27% rel err | |||
*Okay <40% rel err | |||
{{harmonics in equal | 42 | 2 | 1 | intervals=integer | columns=12}} | |||
<br><br><br> | |||
* 42ed257/128 (good 2.3.5.7; bad 11.13) | |||
{{harmonics in equal | 42 | 257 | 128 | intervals=prime}} | |||
* 11ed6/5 (good 2.3.5; okay 7.11.13) | |||
{{harmonics in equal | 11 | 6 | 5 | intervals=prime}} | |||
* 189zpi (28.689c) (good 2.5.13; okay 3.11; bad 7) | |||
{{harmonics in cet | 28.689 | intervals=prime}} | |||
* 190zpi (28.572c) | |||
{{harmonics in cet | 28.572 | intervals=prime}} | |||
* 13-limit WE (28.534c) | |||
{{harmonics in cet | 28.534 | intervals=prime}} | |||
* 34ed7/4 (good 2.5.7.13; okay 3.11) | |||
{{harmonics in equal | 34 | 7 | 4 | intervals=prime}} | |||
* 7-limit WE (28.484c) (good 2.3.5.11.13; bad 7) | |||
{{harmonics in cet | 28.484 | intervals=prime}} | |||
* 191zpi (28.444c) | |||
{{harmonics in cet | 28.444 | intervals=prime}} | |||
* 1ed123/121 (good 2.3.5.11; okay 13; bad 7) | |||
{{harmonics in equal | 1 | 123 | 121 | intervals=prime}} | |||
<br><br><br><br><br> | |||
{{harmonics in cet | 300 | intervals=prime}} | |||
{{harmonics in equal | 140 | 12 | 1 | intervals=prime}} | |||
=== Possible tunings to be used on each page === | |||
You can remove some of these or add more that aren't listed here; this section is pretty much just brainstorming. | |||
(Used https://x31eq.com/temper-pyscript/net.html, used WE instead of TE cause it kept defaulting to WE and I kept not remembering to switch it) | |||
; High-priority | |||
60edo (narrow down edonoi & ZPIs) | |||
* 35edf | |||
* 139ed5 | |||
* 301zpi (20.027c) | |||
* 95edt | |||
* 13-limit WE (20.013c) (155ed6 has octaves only 0.02{{c}} different) | |||
* 215ed12 | |||
* 302zpi (19.962c) | |||
* 208ed11 (ideal for catnip temperament) | |||
* 303zpi (19.913c) | |||
32edo | |||
* 13-limit WE (37.481c) | |||
* 11-limit WE (37.453c) | |||
* 90ed7 (optimal for dual-5) (133zpi's octave only differs by 0.4{{c}}) | |||
* 51edt | |||
* 134zpi (37.176c) | |||
* 75ed5 | |||
33edo | |||
* 76ed5 | |||
* 92ed7 (137zpi's octave differs by only 0.3{{c}}) | |||
* 52ed13 | |||
* 114ed11 | |||
* 138zpi (36.394c) (122ed13's octave differs by only 0.1{{c}}) | |||
* 13-limit WE (36.357c) | |||
* 11-limit WE (36.349c) | |||
* 93ed7 (optimised for dual-fifths) | |||
* 77ed5 (139zpi's octave differs by only 0.2{{c}}) | |||
* 123ed13 / 1ed47/46 (identical within <0.1{{c}}) | |||
* 115ed11 | |||
39edo | |||
* 171zpi (30.973c) (optimised for dual-fifths use) | |||
* 13-limit WE (30.757c) (octave of 135ed11 differs by only 0.2{{c}}) | |||
* 101ed6 (octave of 172zpi differs by only 0.4{{c}}) | |||
* 2.3.5.11 WE (30.703c) | |||
* 173zpi (30.672c) (octave of 62edt differs by only 0.2{{c}}) | |||
* 110ed7 (octave of 145ed13 differs by only 0.1{{c}}) | |||
* 91ed5 | |||
42edo | |||
*Good <27% rel err | |||
*Okay <40% rel err | |||
{{harmonics in equal | 42 | 2 | 1 | intervals=integer | columns=12}} | |||
* 42ed257/128 (good 2.3.5.7; bad 11.13) | |||
* 11ed6/5 (good 2.3.5; okay 7.11.13) | |||
* 189zpi (28.689c) (good 2.5.13; okay 3.11; bad 7) | |||
* 190zpi (28.572c) | |||
* 13-limit WE (28.534c) | |||
* 34ed7/4 (good 2.5.7.13; okay 3.11) | |||
* 7-limit WE (28.484c) (good 2.3.5.11.13; bad 7) | |||
* 191zpi (28.444c) | |||
* 1ed123/121 (good 2.3.5.11; okay 13; bad 7) | |||
45edo | |||
* 209zpi (26.550) | |||
* 13-limit WE (26.695c) | |||
* 161ed12 | |||
* 116ed6 (octave identical to 126ed7 within 0.1{{c}}) | |||
* 7-limit WE (26.745c) | |||
* 207zpi (26.762) | |||
* 71edt (octave identical to 155ed11 within 0.3{{c}}) | |||
54edo | |||
* 139ed6 (octave is identical to 262zpi within 0.2{{c}}) | |||
* 151ed7 | |||
* 193ed12 | |||
* 263zpi (22.243c) | |||
* 13-limit WE (22.198c) (octave is identical to 187ed11 within 0.1{{c}}) | |||
* 2.3.7.11.13 WE (22.180c) | |||
* 264zpi (22.175c) (octave is identical to 194ed12 within 0.01{{c}}) | |||
* 152ed7 | |||
* 140ed6 | |||
* 126ed5 (octave is identical to 86edt within 0.1{{c}}) | |||
59edo | |||
* 152ed6 | |||
* 294zpi (20.399c) | |||
* 211ed12 | |||
* 295zpi (20.342c) | |||
''pure octaves 59edo octave is identical to 137ed5 within 0.05{{c}}'' | |||
* 13-limit WE (20.320c) | |||
* 11-limit WE (20.310c) | |||
* 7-limit WE (20.301c) | |||
* 166ed7 | |||
* 212ed12 | |||
* 296zpi (20.282c) | |||
* 153ed6 | |||
64edo | |||
* 179ed7 (octave is identical to 326zpi within 0.3{{c}}) | |||
* 165ed6 | |||
* 229ed12 (octave is identical to 221ed11 within 0.1{{c}}) | |||
* 327zpi (18.767c) | |||
* 11-limit WE (18.755c) | |||
''pure octaves 64edo (octave is identical to 13-limit WE within 0.13{{c}}'' | |||
* 328zpi (18.721c) | |||
* 180ed7 | |||
* 230ed12 | |||
* 149ed5 | |||
; Medium priority | |||
118edo (choose ZPIS) | |||
{{harmonics in equal | 118 | 2 | 1 | intervals=integer | columns=12}} | |||
* 187edt | |||
* 69edf | |||
* 13-limit WE (10.171c) | |||
* Best nearby ZPI(s) | |||
13edo | |||
{{harmonics in equal | 13 | 2 | 1 | intervals=integer | columns=12}} | |||
* Main: "13edo and optimal octave stretching" | |||
* 2.5.11.13 WE (92.483c) | |||
* 2.5.7.13 WE (92.804c) | |||
* 2.3 WE (91.405c) (good for opposite 7 mapping) | |||
* 38zpi (92.531c) | |||
103edo (narrow down edonoi, choose ZPIS) | |||
{{harmonics in equal | 103 | 2 | 1 | intervals=integer | columns=12}} | |||
* 163edt | |||
* 239ed5 | |||
* 266ed6 | |||
* 289ed7 | |||
* 356ed11 | |||
* 369ed12 | |||
* 381ed13 | |||
* 421ed17 | |||
* 466ed23 | |||
* 13-limit WE (11.658c) | |||
* Best nearby ZPI(s) | |||
111edo (choose ZPIS) | |||
{{harmonics in equal | 111 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
; Low priority | |||
104edo | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
125edo | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
145edo | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
152edo | |||
* 241edt | |||
* 13-limit WE (7.894c) | |||
* Best nearby ZPI(s) | |||
159edo | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
166edo | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
182edo | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
198edo | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
212edo | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
243edo | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
247edo | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
; Optional | |||
25edo | |||
{{harmonics in equal | 25 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
26edo | |||
{{harmonics in equal | 26 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
29edo | |||
{{harmonics in equal | 29 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
30edo | |||
{{harmonics in equal | 30 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
34edo | |||
{{harmonics in equal | 34 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
35edo | |||
{{harmonics in equal | 35 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
36edo | |||
{{harmonics in equal | 36 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
37edo | |||
{{harmonics in equal | 37 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
5edo | |||
{{harmonics in equal | 5 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
6edo | |||
{{harmonics in equal | 6 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
9edo | |||
{{harmonics in equal | 9 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
10edo | |||
{{harmonics in equal | 10 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
11edo | |||
{{harmonics in equal | 11 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
15edo | |||
{{harmonics in equal | 15 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
18edo | |||
{{harmonics in equal | 18 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
48edo | |||
{{harmonics in equal | 48 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
20edo | |||
{{harmonics in equal | 20 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
24edo | |||
{{harmonics in equal | 24 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) | |||
28edo | |||
{{harmonics in equal | 28 | 2 | 1 | intervals=integer | columns=12}} | |||
* Nearby edt, ed6, ed12 and/or edf | |||
* Nearby ed5, ed10, ed7 and/or ed11 (optional) | |||
* 1-2 WE tunings | |||
* Best nearby ZPI(s) |