Ed12: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth moved page Ed12 to User:BudjarnLambeth/Ed12
Tag: New redirect
Fredg999 category edits (talk | contribs)
m Removing from Category:Edonoi using Cat-a-lot
 
(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
#REDIRECT [[User:BudjarnLambeth/Ed12]]
'''Equal divisions of the 12th harmonic''' ('''ed12''') are [[tuning system|tunings]] obtained by dividing the [[12/1|12th harmonic]] in a certain number of [[equal]] steps.
 
The twelfth harmonic, duodecuple, or dodecatave, is particularly wide as far as [[equivalence]]s go, as there are at absolute most about 3.1 instances of the 12th harmonic within the [[human hearing range]]. This width means that the listener probably will not hear the interval as an equivalence, but instead will hear the [[pseudo-octave]] or pseudo-tritave or similar as one – this disconnect between period versus equivalence could be used by a composer to surprise their listener, in a similar way that [[13edo]] can be used to make melodies that sound like [[12edo]], until they suddenly do not.
 
However, using ed12's does not necessarily imply using the 12th harmonic as an interval of equivalence. The quintessential reason for using a 12th-harmonic based tuning is that it is a compromise between [[2/1|octave]] and [[3/1|twelfth]] based tunings, like an [[ed6]] – but ed12 leans more towards octaves than ed6 does. In fact, ed12's optimize for the 1:2:3:4:6:12 chord, with equal magnitudes and opposite signs of [[error]] on 3 and 4 and on 2 and 6.
 
As such, an ed12 sometimes gives you the right amount of [[stretched and compressed tuning|stretch]] for equal temperaments whose 3 is more inaccurate than its higher [[prime interval|primes]]. Here for example, you can choose how much you wish to stretch [[31edo]] depending on your harmonic style: [[80ed6]] vs [[111ed12]].
 
== Individual pages for ed12's ==
{| class="wikitable center-all"
|+ style=white-space:nowrap | 0…99
| [[0ed12|0]]
| [[1ed12|1]]
| [[2ed12|2]]
| [[3ed12|3]]
| [[4ed12|4]]
| [[5ed12|5]]
| [[6ed12|6]]
| [[7ed12|7]]
| [[8ed12|8]]
| [[9ed12|9]]
|-
| [[10ed12|10]]
| [[11ed12|11]]
| [[12ed12|12]]
| [[13ed12|13]]
| [[14ed12|14]]
| [[15ed12|15]]
| [[16ed12|16]]
| [[17ed12|17]]
| [[18ed12|18]]
| [[19ed12|19]]
|-
| [[20ed12|20]]
| [[21ed12|21]]
| [[22ed12|22]]
| [[23ed12|23]]
| [[24ed12|24]]
| [[25ed12|25]]
| [[26ed12|26]]
| [[27ed12|27]]
| [[28ed12|28]]
| [[29ed12|29]]
|-
| [[30ed12|30]]
| [[31ed12|31]]
| [[32ed12|32]]
| [[33ed12|33]]
| [[34ed12|34]]
| [[35ed12|35]]
| [[36ed12|36]]
| [[37ed12|37]]
| [[38ed12|38]]
| [[39ed12|39]]
|-
| [[40ed12|40]]
| [[41ed12|41]]
| [[42ed12|42]]
| [[43ed12|43]]
| [[44ed12|44]]
| [[45ed12|45]]
| [[46ed12|46]]
| [[47ed12|47]]
| [[48ed12|48]]
| [[49ed12|49]]
|-
| [[50ed12|50]]
| [[51ed12|51]]
| [[52ed12|52]]
| [[53ed12|53]]
| [[54ed12|54]]
| [[55ed12|55]]
| [[56ed12|56]]
| [[57ed12|57]]
| [[58ed12|58]]
| [[59ed12|59]]
|-
| [[60ed12|60]]
| [[61ed12|61]]
| [[62ed12|62]]
| [[63ed12|63]]
| [[64ed12|64]]
| [[65ed12|65]]
| [[66ed12|66]]
| [[67ed12|67]]
| [[68ed12|68]]
| [[69ed12|69]]
|-
| [[70ed12|70]]
| [[71ed12|71]]
| [[72ed12|72]]
| [[73ed12|73]]
| [[74ed12|74]]
| [[75ed12|75]]
| [[76ed12|76]]
| [[77ed12|77]]
| [[78ed12|78]]
| [[79ed12|79]]
|-
| [[80ed12|80]]
| [[81ed12|81]]
| [[82ed12|82]]
| [[83ed12|83]]
| [[84ed12|84]]
| [[85ed12|85]]
| [[86ed12|86]]
| [[87ed12|87]]
| [[88ed12|88]]
| [[89ed12|89]]
|-
| [[90ed12|90]]
| [[91ed12|91]]
| [[92ed12|92]]
| [[93ed12|93]]
| [[94ed12|94]]
| [[95ed12|95]]
| [[96ed12|96]]
| [[97ed12|97]]
| [[98ed12|98]]
| [[99ed12|99]]
|}
{| class="wikitable center-all mw-collapsible mw-collapsed"
|+ style=white-space:nowrap | 100…199
| [[100ed12|100]]
| [[101ed12|101]]
| [[102ed12|102]]
| [[103ed12|103]]
| [[104ed12|104]]
| [[105ed12|105]]
| [[106ed12|106]]
| [[107ed12|107]]
| [[108ed12|108]]
| [[109ed12|109]]
|-
| [[110ed12|110]]
| [[111ed12|111]]
| [[112ed12|112]]
| [[113ed12|113]]
| [[114ed12|114]]
| [[115ed12|115]]
| [[116ed12|116]]
| [[117ed12|117]]
| [[118ed12|118]]
| [[119ed12|119]]
|-
| [[120ed12|120]]
| [[121ed12|121]]
| [[122ed12|122]]
| [[123ed12|123]]
| [[124ed12|124]]
| [[125ed12|125]]
| [[126ed12|126]]
| [[127ed12|127]]
| [[128ed12|128]]
| [[129ed12|129]]
|-
| [[130ed12|130]]
| [[131ed12|131]]
| [[132ed12|132]]
| [[133ed12|133]]
| [[134ed12|134]]
| [[135ed12|135]]
| [[136ed12|136]]
| [[137ed12|137]]
| [[138ed12|138]]
| [[139ed12|139]]
|-
| [[140ed12|140]]
| [[141ed12|141]]
| [[142ed12|142]]
| [[143ed12|143]]
| [[144ed12|144]]
| [[145ed12|145]]
| [[146ed12|146]]
| [[147ed12|147]]
| [[148ed12|148]]
| [[149ed12|149]]
|-
| [[150ed12|150]]
| [[151ed12|151]]
| [[152ed12|152]]
| [[153ed12|153]]
| [[154ed12|154]]
| [[155ed12|155]]
| [[156ed12|156]]
| [[157ed12|157]]
| [[158ed12|158]]
| [[159ed12|159]]
|-
| [[160ed12|160]]
| [[161ed12|161]]
| [[162ed12|162]]
| [[163ed12|163]]
| [[164ed12|164]]
| [[165ed12|165]]
| [[166ed12|166]]
| [[167ed12|167]]
| [[168ed12|168]]
| [[169ed12|169]]
|-
| [[170ed12|170]]
| [[171ed12|171]]
| [[172ed12|172]]
| [[173ed12|173]]
| [[174ed12|174]]
| [[175ed12|175]]
| [[176ed12|176]]
| [[177ed12|177]]
| [[178ed12|178]]
| [[179ed12|179]]
|-
| [[180ed12|180]]
| [[181ed12|181]]
| [[182ed12|182]]
| [[183ed12|183]]
| [[184ed12|184]]
| [[185ed12|185]]
| [[186ed12|186]]
| [[187ed12|187]]
| [[188ed12|188]]
| [[189ed12|189]]
|-
| [[190ed12|190]]
| [[191ed12|191]]
| [[192ed12|192]]
| [[193ed12|193]]
| [[194ed12|194]]
| [[195ed12|195]]
| [[196ed12|196]]
| [[197ed12|197]]
| [[198ed12|198]]
| [[199ed12|199]]
|}
 
; 200 and beyond
* [[258ed12|258]]
 
<!-- Uncomment this when there are more pages
{| class="wikitable center-all mw-collapsible mw-collapsed"
|+ style=white-space:nowrap | 200…299
| [[200ed12|200]]
| [[201ed12|201]]
| [[202ed12|202]]
| [[203ed12|203]]
| [[204ed12|204]]
| [[205ed12|205]]
| [[206ed12|206]]
| [[207ed12|207]]
| [[208ed12|208]]
| [[209ed12|209]]
|-
| [[210ed12|210]]
| [[211ed12|211]]
| [[212ed12|212]]
| [[213ed12|213]]
| [[214ed12|214]]
| [[215ed12|215]]
| [[216ed12|216]]
| [[217ed12|217]]
| [[218ed12|218]]
| [[219ed12|219]]
|-
| [[220ed12|220]]
| [[221ed12|221]]
| [[222ed12|222]]
| [[223ed12|223]]
| [[224ed12|224]]
| [[225ed12|225]]
| [[226ed12|226]]
| [[227ed12|227]]
| [[228ed12|228]]
| [[229ed12|229]]
|-
| [[230ed12|230]]
| [[231ed12|231]]
| [[232ed12|232]]
| [[233ed12|233]]
| [[234ed12|234]]
| [[235ed12|235]]
| [[236ed12|236]]
| [[237ed12|237]]
| [[238ed12|238]]
| [[239ed12|239]]
|-
| [[240ed12|240]]
| [[241ed12|241]]
| [[242ed12|242]]
| [[243ed12|243]]
| [[244ed12|244]]
| [[245ed12|245]]
| [[246ed12|246]]
| [[247ed12|247]]
| [[248ed12|248]]
| [[249ed12|249]]
|-
| [[250ed12|250]]
| [[251ed12|251]]
| [[252ed12|252]]
| [[253ed12|253]]
| [[254ed12|254]]
| [[255ed12|255]]
| [[256ed12|256]]
| [[257ed12|257]]
| [[258ed12|258]]
| [[259ed12|259]]
|-
| [[260ed12|260]]
| [[261ed12|261]]
| [[262ed12|262]]
| [[263ed12|263]]
| [[264ed12|264]]
| [[265ed12|265]]
| [[266ed12|266]]
| [[267ed12|267]]
| [[268ed12|268]]
| [[269ed12|269]]
|-
| [[270ed12|270]]
| [[271ed12|271]]
| [[272ed12|272]]
| [[273ed12|273]]
| [[274ed12|274]]
| [[275ed12|275]]
| [[276ed12|276]]
| [[277ed12|277]]
| [[278ed12|278]]
| [[279ed12|279]]
|-
| [[280ed12|280]]
| [[281ed12|281]]
| [[282ed12|282]]
| [[283ed12|283]]
| [[284ed12|284]]
| [[285ed12|285]]
| [[286ed12|286]]
| [[287ed12|287]]
| [[288ed12|288]]
| [[289ed12|289]]
|-
| [[290ed12|290]]
| [[291ed12|291]]
| [[292ed12|292]]
| [[293ed12|293]]
| [[294ed12|294]]
| [[295ed12|295]]
| [[296ed12|296]]
| [[297ed12|297]]
| [[298ed12|298]]
| [[299ed12|299]]
|}
-->
 
[[Category:Ed12's| ]]
<!-- main article -->
[[Category:List of scales]]