3/2: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
Sintel (talk | contribs)
In regular temperament theory: I'll do you one better
 
(9 intermediate revisions by 3 users not shown)
Line 14: Line 14:
{{Wikipedia|Perfect fifth}}
{{Wikipedia|Perfect fifth}}


'''3/2''', the '''just perfect fifth''', is a very [[consonance|consonant]] interval, due to the numerator and denominator of its ratio being very small numbers. Only the [[2/1|octave]] and the [[3/1|compound fifth]] have smaller numbers.
'''3/2''', the '''just perfect fifth''', is a very [[consonance|consonant]] interval, due to the numerator and denominator of its ratio being very small numbers. Only the [[2/1|octave]] and the [[3/1|tritave]] have smaller numbers.


== Properties ==
== Properties ==
Line 27: Line 27:


=== In regular temperament theory ===
=== In regular temperament theory ===
Because 3/2 has very low [[harmonic entropy]], it is still recognizable even when heavily tempered. Often it is tempered so that an octave-reduced stack of fourths or fifths approximates some other interval. Some examples:
Because 3/2 is a very simple and concordant interval, it is still recognizable even when heavily tempered. Often it is tempered so that an octave-reduced stack of fourths or fifths approximates some other interval. Some examples:


[[Meantone]] temperament flattens the fifth from just such that the major third generated by stacking four fifths is closer to (or even identical to) 5/4. The minor 3rd generated by stacking three fourths is closer to 6/5.
[[Meantone]] temperament flattens the fifth from just (to around 695 cents) such that the major third generated by stacking four fifths is closer to (or even identical to) 5/4. The minor 3rd generated by stacking three fourths is closer to 6/5.


[[Superpyth]] temperaments ''sharpen'' the fifth from just so that the major third is closer to 9/7 and the minor third is closer to 7/6. Thus the minor 7th 16/9 approximates 7/4 instead of 9/5.
[[Superpyth]] temperaments ''sharpen'' the fifth from just so that the major third is closer to 9/7 and the minor third is closer to 7/6. Thus the minor 7th 16/9 approximates 7/4 instead of 9/5.


[[Schismatic]] temperament flattens the fifth very slightly such that the ''diminished'' fourth generated by stacking eight fourths approximates 5/4. Thus a triad with 5/4 is written as C F♭ G (unless the notation has accidentals for [[81/80]], e.g. C vE G).
* One may choose to prioritize the accurate tuning of either the thirds or the harmonic seventh, leading to a ~710c tuning when prioritizing the thirds, or a ~715c tuning when prioritizing 7/4.
 
[[Schismatic|Schismic]] temperament adjusts the fifth such that the ''diminished'' fourth generated by stacking eight fourths approximates 5/4. As this is already a close approximation, the tuning of the fifth can be varied around its just tuning, but is most simply flattened by a tiny amount. Thus a triad with 5/4 is written as {{nowrap|{{dash|C, F♭, G}}}} (unless the notation has accidentals for [[81/80]], e.g. {{nowrap|{{dash|C, vE, G}}}}).
 
* Garibaldi temperament is an extension of schismatic that sharpens the fifth so that the small interval between the major third and diminished fourth can also be used to create simple 7-limit intervals.


== Approximations by edos ==
== Approximations by edos ==
12edo approximates 3/2 to within only . [[29edo]], [[41edo]] and [[53edo]] are even more accurate. In regards to [[telicity]], while 12edo is a 2-strong 3-2 [[telic]] system, 53edo is notably a 3-strong 3-2 telic system.
12edo approximates 3/2 to within only 2{{c}}. [[29edo]], [[41edo]], and [[53edo]] are even more accurate. In regards to [[telicity]], while 12edo is a 2-strong 3-2 [[telic]] system, 53edo is notably a 3-strong 3-2 telic system.


The following edos (up to 200) approximate 3/2 to within both and 7%. Errors are unsigned so that the table can be sorted by them. The arrow column indicates a sharp (↑) or flat (↓) fifth.
The following edos (up to 200) approximate 3/2 to within both 7{{c}} and 7%. Errors are unsigned so that the table can be sorted by them. The arrow column indicates a sharp (↑) or flat (↓) fifth.


{| class="wikitable sortable right-1 center-2 right-3 right-4 center-5"
{| class="wikitable sortable right-1 center-2 right-3 right-4 center-5"
|-
|-
! [[Edo]]
! [[Edo]]
! class="unsortable" | deg\edo
! class="unsortable" | Deg\edo
! Absolute<br>Error ([[Cent|¢]])
! Absolute <br>error ([[Cent|¢]])
! Relative
! Relative <br>error (%)
Error (%)
! &#x2195;
! &#8597;
! class="unsortable" | Equally accurate <br>multiples
! class="unsortable" | Equally accurate
multiples
|-
|-
|  [[12edo|12]]  ||  7\12  || 1.955 || 1.955 ||&darr; || [[24edo|14\24]], [[36edo|21\36]]
|  [[12edo|12]]  ||  7\12  || 1.955 || 1.955 || &darr; || [[24edo|14\24]], [[36edo|21\36]]
|-
|-
|  [[17edo|17]]  ||  10\17  || 3.927 || 5.564 ||&uarr; ||  
|  [[17edo|17]]  ||  10\17  || 3.927 || 5.564 || &uarr; ||  
|-
|-
|  [[29edo|29]]  ||  17\29  || 1.493 || 3.609 ||&uarr; ||  
|  [[29edo|29]]  ||  17\29  || 1.493 || 3.609 || &uarr; ||  
|-
|-
|  [[41edo|41]]  ||  24\41  || 0.484 || 1.654 ||&uarr; || [[82edo|48\82]], [[123edo|72\123]], [[164edo|96\164]]
|  [[41edo|41]]  ||  24\41  || 0.484 || 1.654 || &uarr; || [[82edo|48\82]], [[123edo|72\123]], [[164edo|96\164]]
|-
|-
|  [[53edo|53]]  ||  31\53  || 0.068 || 0.301 ||&darr; || [[106edo|62\106]], [[159edo|93\159]]
|  [[53edo|53]]  ||  31\53  || 0.068 || 0.301 || &darr; || [[106edo|62\106]], [[159edo|93\159]]
|-
|-
|  [[65edo|65]]  ||  38\65  || 0.416 || 2.256 ||&darr; || [[130edo|76\130]], [[195edo|114\195]]
|  [[65edo|65]]  ||  38\65  || 0.416 || 2.256 || &darr; || [[130edo|76\130]], [[195edo|114\195]]
|-
|-
|  [[70edo|70]]  ||  41\70  || 0.902 || 5.262 ||&uarr; ||  
|  [[70edo|70]]  ||  41\70  || 0.902 || 5.262 || &uarr; ||  
|-
|-
|  [[77edo|77]]  ||  45\77  || 0.656 || 4.211 ||&darr; ||  
|  [[77edo|77]]  ||  45\77  || 0.656 || 4.211 || &darr; ||  
|-
|-
|  [[89edo|89]]  ||  52\89  || 0.831 || 6.166 ||&darr; ||  
|  [[89edo|89]]  ||  52\89  || 0.831 || 6.166 || &darr; ||  
|-
|-
|  [[94edo|94]]  ||  55\94  || 0.173 || 1.352 ||&uarr; || [[188edo|110\188]]
|  [[94edo|94]]  ||  55\94  || 0.173 || 1.352 || &uarr; || [[188edo|110\188]]
|-
|-
| [[111edo|111]] ||  65\111 || 0.748 || 6.916 ||&uarr; ||  
| [[111edo|111]] ||  65\111 || 0.748 || 6.916 || &uarr; ||  
|-
|-
| [[118edo|118]] ||  69\118 || 0.260 || 2.557 ||&darr; ||  
| [[118edo|118]] ||  69\118 || 0.260 || 2.557 || &darr; ||  
|-
|-
| [[135edo|135]] ||  79\135 || 0.267 || 3.006 ||&uarr; ||  
| [[135edo|135]] ||  79\135 || 0.267 || 3.006 ||&uarr; ||  
|-
|-
| [[142edo|142]] ||  83\142 || 0.547 || 6.467 ||&darr; ||  
| [[142edo|142]] ||  83\142 || 0.547 || 6.467 || &darr; ||  
|-
|-
| [[147edo|147]] ||  86\147 || 0.086 || 1.051 ||&uarr; ||  
| [[147edo|147]] ||  86\147 || 0.086 || 1.051 || &uarr; ||  
|-
|-
| [[171edo|171]] || 100\171 || 0.200 || 2.859 ||&darr; ||  
| [[171edo|171]] || 100\171 || 0.200 || 2.859 || &darr; ||  
|-
|-
| [[176edo|176]] || 103\176 || 0.318 || 4.660 ||&uarr; ||  
| [[176edo|176]] || 103\176 || 0.318 || 4.660 || &uarr; ||  
|-
|-
| [[183edo|183]] || 107\183 || 0.316 || 4.814 ||&darr; ||  
| [[183edo|183]] || 107\183 || 0.316 || 4.814 || &darr; ||  
|-
|-
| [[200edo|200]] || 117\200 || 0.045 || 0.750 ||&uarr; ||  
| [[200edo|200]] || 117\200 || 0.045 || 0.750 || &uarr; ||  
|}
|}
Edos can be classified by their approximation of 3/2 as:
Edos can be classified by their approximation of 3/2 as:
*'''Superflat''' edos have fifths narrower than 4\7 = ~686¢
* '''Superflat''' edos have fifths narrower than {{nowrap|4\7 {{=}} ~686{{c}}}}
*'''Perfect''' edos have fifths of exactly 4\7
* '''Perfect''' edos have fifths of exactly 4\7
*'''Diatonic''' edos have fifths between 4\7 and 3\5 = 720¢
* '''Diatonic''' edos have fifths between 4\7 and {{nowrap|3\5 {{=}} 720{{c}}}}
*'''Pentatonic''' have fifths of exactly 3\5
* '''Pentatonic''' have fifths of exactly 3\5
*'''Supersharp''' edos have fifths wider than 3\5
* '''Supersharp''' edos have fifths wider than 3\5
 
{| class="wikitable sortable"
{| class="wikitable sortable"
|+Comparison of the fifths of edos 5 to 31
|+ style="font-size: 105%;" | Comparison of the fifths of edos 5 to 31
|-
! Edo
! Edo
! Degree
! Degree
Line 103: Line 108:
! Error (¢)
! Error (¢)
|-
|-
|[[5edo]]
| [[5edo]]
| 3\5
| 3\5
| 720.000
| 720.000
| pentatonic edo
| Pentatonic edo
|  +18.045
|  +18.045
|-
|-
|[[7edo]]
| [[7edo]]
| 4\7
| 4\7
| 685.714
| 685.714
| perfect edo
| perfect edo
| -16.241
| −16.241
|-
|-
|[[8edo]]
| [[8edo]]
| 5\8
| 5\8
| 750.000
| 750.000
Line 121: Line 126:
|  +48.045
|  +48.045
|-
|-
|[[9edo]]
| [[9edo]]
| 5\9
| 5\9
| 666.667
| 666.667
| superflat edo
| superflat edo
| -35.288
| −35.288
|-
|-
|[[10edo]]
| [[10edo]]
| 6\10
| 6\10
| 720.000
| 720.000
Line 133: Line 138:
|  +18.045
|  +18.045
|-
|-
|[[11edo]]
| [[11edo]]
| 6\11
| 6\11
| 654.545
| 654.545
| superflat edo
| superflat edo
| -47.41
| −47.41
|-
|-
|[[12edo]]
| [[12edo]]
| 7\12
| 7\12
| 700.000
| 700.000
| diatonic edo
| diatonic edo
| -1.955
| −1.955
|-
|-
|[[13edo]]
| [[13edo]]
| 8\13
| 8\13
| 738.462
| 738.462
Line 151: Line 156:
|  +36.507
|  +36.507
|-
|-
|[[14edo]]
| [[14edo]]
| 8\14
| 8\14
| 685.714
| 685.714
| perfect edo
| perfect edo
| -16.241
| −16.241
|-
|-
|[[15edo]]
| [[15edo]]
| 9\15
| 9\15
| 720.000
| 720.000
Line 163: Line 168:
|  +18.045
|  +18.045
|-
|-
|[[16edo]]
| [[16edo]]
| 9\16
| 9\16
| 675.000
| 675.000
| superflat edo
| superflat edo
| -26.955
| −26.955
|-
|-
|[[17edo]]
| [[17edo]]
| 10\17
| 10\17
| 705.882
| 705.882
Line 175: Line 180:
|  +3.927
|  +3.927
|-
|-
|[[18edo]]
| [[18edo]]
| 11\18
| 11\18
| 733.333
| 733.333
Line 181: Line 186:
|  +31.378
|  +31.378
|-
|-
|[[19edo]]
| [[19edo]]
| 11\19
| 11\19
| 694.737
| 694.737
| diatonic edo
| diatonic edo
| -7.218
| −7.218
|-
|-
|[[20edo]]
| [[20edo]]
| 12\20
| 12\20
| 720.000
| 720.000
Line 193: Line 198:
|  +18.045
|  +18.045
|-
|-
|[[21edo]]
| [[21edo]]
| 12\21
| 12\21
| 685.714
| 685.714
| perfect edo
| perfect edo
| -16.241
| −16.241
|-
|-
|[[22edo]]
| [[22edo]]
| 13\22
| 13\22
| 709.091
| 709.091
Line 205: Line 210:
|  +7.136
|  +7.136
|-
|-
|[[23edo]]
| [[23edo]]
| 13\23
| 13\23
| 678.261
| 678.261
| superflat edo
| superflat edo
| -23.694
| −23.694
|-
|-
|[[24edo]]
| [[24edo]]
| 14\24
| 14\24
| 700.000
| 700.000
| diatonic edo
| diatonic edo
| -1.955
| −1.955
|-
|-
|[[25edo]]
| [[25edo]]
| 15\25
| 15\25
| 720.000
| 720.000
Line 223: Line 228:
|  +18.045
|  +18.045
|-
|-
|[[26edo]]
| [[26edo]]
| 15\26
| 15\26
| 692.308
| 692.308
| diatonic edo
| diatonic edo
| -9.647
| −9.647
|-
|-
|[[27edo]]
| [[27edo]]
| 16\27
| 16\27
| 711.111
| 711.111
Line 235: Line 240:
|  +9.156
|  +9.156
|-
|-
|[[28edo]]
| [[28edo]]
| 16\28
| 16\28
| 685.714
| 685.714
| perfect edo
| perfect edo
| -16.241
| −16.241
|-
|-
|[[29edo]]
| [[29edo]]
| 17\29
| 17\29
| 703.448
| 703.448
Line 247: Line 252:
|  +1.493
|  +1.493
|-
|-
|[[30edo]]
| [[30edo]]
| 17\30
| 18\30
| 720.000
| 720.000
| pentatonic edo
| pentatonic edo
|  +18.045
|  +18.045
|-
|-
|[[31edo]]
| [[31edo]]
| 18\31
| 18\31
| 696.774
| 696.774
| diatonic edo
| diatonic edo
| -5.181
| −5.181
|}
|}


Retrieved from "https://en.xen.wiki/w/3/2"