612edo: Difference between revisions

ArrowHead294 (talk | contribs)
No edit summary
m Theory: Fix missing word
 
(5 intermediate revisions by 2 users not shown)
Line 3: Line 3:


== Theory ==
== Theory ==
612edo is a very strong [[5-limit]] system, a fact noted by {{w|Isaac Newton}}<ref>[https://emusicology.org/index.php/EMR/article/view/7647/6030 Muzzulini, Daniel. 2021. "Isaac Newton's Microtonal Approach to Just Intonation". ''Empirical Musicology Review'' 15 (3-4):223-48. https://doi.org/10.18061/emr.v15i3-4.7647.]</ref>, {{w|Robert Holford Macdowall Bosanquet|R. H. M. Bosanquet}}{{citation needed}} and {{w|James Murray Barbour}}{{citation needed}}. It [[tempers out]] the {{monzo| 485 -306 }} ([[sasktel comma]]) in the 3-limit, and in the 5-limit {{monzo| 1 -27 18 }} ([[ennealimma]]), {{monzo| -52 -17 34 }} ([[septendecima]]), {{monzo| -53 10 16 }} ([[kwazy comma]]), {{monzo| 54 -37 2 }} ([[monzisma]]), {{monzo| -107 47 14 }} (fortune comma), and {{monzo| 161 -84 -12 }} ([[atom]]). In the 7-limit it tempers out [[2401/2400]] and [[4375/4374]], so that it [[support]]s the [[ennealimmal]] temperament, and in fact provides the [[optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwazy comma. In the 11-limit, it tempers out [[3025/3024]] and [[9801/9800]], so that 612 supports the [[hemiennealimmal]] temperament. In the 13-limit, it tempers [[2200/2197]] and [[4096/4095]].
612edo is a very strong [[5-limit]] system, a fact noted by {{w|Isaac Newton}}<ref>[https://emusicology.org/index.php/EMR/article/view/7647/6030 Muzzulini, Daniel. 2021. "Isaac Newton's Microtonal Approach to Just Intonation". ''Empirical Musicology Review'' 15 (3-4):223-48. https://doi.org/10.18061/emr.v15i3-4.7647.]</ref>, {{w|Robert Holford Macdowall Bosanquet|R. H. M. Bosanquet}}{{citation needed}} and {{w|James Murray Barbour}}{{citation needed}}. As an equal temperament, it [[tempering out|tempers out]] the {{monzo| 485 -306 }} ([[sasktel comma]]) in the 3-limit, and in the 5-limit {{monzo| 1 -27 18 }} ([[ennealimma]]), {{monzo| -52 -17 34 }} ([[septendecima]]), {{monzo| -53 10 16 }} ([[kwazy comma]]), {{monzo| 54 -37 2 }} ([[monzisma]]), {{monzo| -107 47 14 }} (fortune comma), and {{monzo| 161 -84 -12 }} ([[atom]]). In the 7-limit it tempers out [[2401/2400]] and [[4375/4374]], so that it [[support]]s the [[ennealimmal]] temperament, and in fact provides the [[optimal patent val]] for ennealimmal. The 7-limit val for 612 can be characterized as the ennealimmal commas plus the kwazy comma. In the 11-limit, it tempers out [[3025/3024]] and [[9801/9800]], so that 612 supports the [[hemiennealimmal]] temperament. In the 13-limit, it tempers [[2200/2197]] and [[4096/4095]].


The 612edo has been proposed as the logarithmic [[interval size measure]] '''skisma''' (or '''sk'''), since one step is nearly the same size as the [[schisma]] (32805/32768), 1/12 of a [[Pythagorean comma]] or 1/11 of a [[syntonic comma]]. Since 612 is divisible by {{EDOs| 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306 }}, it can readily express the step sizes of the 12, 17, 34, and 68 divisions. A table of intervals approximated by 612 can be found under [[Table of 612edo intervals]].
The 612edo step has been proposed as the logarithmic [[interval size measure]] '''skisma''' (or '''sk'''), since one step is nearly the same size as the [[schisma]] (32805/32768), 1/12 of a [[Pythagorean comma]] or 1/11 of a [[syntonic comma]]. Since 612 is divisible by {{EDOs| 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204 and 306 }}, it can readily express the step sizes of the 12, 17, 34, and 68 divisions. A table of intervals approximated by 612 can be found under [[Table of 612edo intervals]].


=== Prime harmonics ===
=== Prime harmonics ===
Line 16: Line 16:
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br />8ve stretch (¢)
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
! colspan="2" | Tuning error
|-
|-
Line 24: Line 24:
| 2.3.5
| 2.3.5
| {{monzo| 1 -27 18 }}, {{monzo| -53 10 16 }}
| {{monzo| 1 -27 18 }}, {{monzo| -53 10 16 }}
| {{mapping| 612 970 1421 }}
| {{Mapping| 612 970 1421 }}
| +0.0044
| +0.0044
| 0.0089
| 0.0089
Line 31: Line 31:
| 2.3.5.7
| 2.3.5.7
| 2401/2400, 4375/4374, {{monzo| -53 10 16 }}
| 2401/2400, 4375/4374, {{monzo| -53 10 16 }}
| {{mapping| 612 970 1421 1718 }}
| {{Mapping| 612 970 1421 1718 }}
| +0.0210
| +0.0210
| 0.0297
| 0.0297
Line 38: Line 38:
| 2.3.5.7.11
| 2.3.5.7.11
| 2401/2400, 3025/3024, 4375/4374, {{monzo| 21 -6 -7 -2 3 }}
| 2401/2400, 3025/3024, 4375/4374, {{monzo| 21 -6 -7 -2 3 }}
| {{mapping| 612 970 1421 1718 2117 }}
| {{Mapping| 612 970 1421 1718 2117 }}
| +0.0363
| +0.0363
| 0.0406
| 0.0406
Line 45: Line 45:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 2200/2197, 2401/2400, 3025/3024, 4096/4095, 4375/4374
| 2200/2197, 2401/2400, 3025/3024, 4096/4095, 4375/4374
| {{mapping| 612 970 1421 1718 2117 2265 }}
| {{Mapping| 612 970 1421 1718 2117 2265 }}
| +0.0010
| +0.0010
| 0.0871
| 0.0871
Line 52: Line 52:
| 2.3.5.7.11.13.19
| 2.3.5.7.11.13.19
| 1331/1330, 1540/1539, 2200/2197, 2376/2375, 2926/2925, 4096/4095
| 1331/1330, 1540/1539, 2200/2197, 2376/2375, 2926/2925, 4096/4095
| {{mapping| 612 970 1421 1718 2117 2265 2600 }}
| {{Mapping| 612 970 1421 1718 2117 2265 2600 }}
| −0.0168
| −0.0168
| 0.0917
| 0.0917
Line 64: Line 64:
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
|-
! Periods<br />per 8ve
! Periods<br>per 8ve
! Generator*
! Generator*
! Cents*
! Cents*
! Associated<br />ratio*
! Associated<br>ratio*
! Temperaments
! Temperaments
|-
|-
Line 86: Line 86:
| 162.75
| 162.75
| 1125/1024
| 1125/1024
| [[Kwazy]]
| [[Crazy]]
|-
|-
| 4
| 4
| 194\612<br />(41\612)
| 194\612<br>(41\612)
| 380.39<br />(80.39)
| 380.39<br>(80.39)
| 81/65<br />(22/21)
| 81/65<br>(22/21)
| [[Quasithird]]
| [[Quasithird]]
|-
|-
| 9
| 9
| 133\612<br />(25\612)
| 133\612<br>(25\612)
| 315.69<br />(49.02)
| 315.69<br>(49.02)
| 6/5<br />(36/35)
| 6/5<br>(36/35)
| [[Ennealimmal]]
| [[Ennealimmal]]
|-
|-
| 12
| 12
| 124\612<br />(22\612)
| 124\612<br>(22\612)
| 243.137<br />(43.14)
| 243.137<br>(43.14)
| 3145728/2734375<br />(?)
| 3145728/2734375<br>(?)
| [[Magnesium]]
| [[Magnesium]]
|-
|-
| 12
| 12
| 254\612<br />(1\612)
| 254\612<br>(1\612)
| 498.04<br />(1.96)
| 498.04<br>(1.96)
| 4/3<br />(32805/32768)
| 4/3<br>(32805/32768)
| [[Atomic]]
| [[Atomic]]
|-
|-
| 17
| 17
| 127\612<br />(17\612)
| 127\612<br>(17\612)
| 249.02<br />(33.33)
| 249.02<br>(33.33)
| {{monzo| -23 5 9 -2 }}<br />(100352/98415)
| {{monzo| -23 5 9 -2 }}<br>(100352/98415)
| [[Chlorine]]
| [[Chlorine]]
|-
|-
| 18
| 18
| 127\612<br />(9\612)
| 127\612<br>(9\612)
| 249.02<br />(17.65)
| 249.02<br>(17.65)
| 231/200<br />(99/98)
| 231/200<br>(99/98)
| [[Hemiennealimmal]] (11-limit)
| [[Hemiennealimmal]] (11-limit)
|}
|}
<nowiki />* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if distinct
<nowiki/>* [[Normal lists|Octave-reduced form]], reduced to the first half-octave, and [[normal lists|minimal form]] in parentheses if distinct


== Music ==
== Music ==