Hemipyth: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
2^67-1 (talk | contribs)
mNo edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 80: Line 80:
The Pythagorean (2.3) part of hemipyth can be notated using traditional notation where octaves represent multiples of {{sfrac|2|1}}, chain of fifths denotes multiples of {{sfrac|3|2}}, the sharp sign is equal to {{sfrac|2187|2048}} etc.
The Pythagorean (2.3) part of hemipyth can be notated using traditional notation where octaves represent multiples of {{sfrac|2|1}}, chain of fifths denotes multiples of {{sfrac|3|2}}, the sharp sign is equal to {{sfrac|2187|2048}} etc.


A prototypical 5L 2s 5|1 (Ionian) scale would be spelled C, D, E, F, G, A, B, (C).
A prototypical {{nowrap|5L 2s 5{{!}}1}} (Ionian) scale would be spelled C, D, E, F, G, A, B, (C).


Simple otonal chords can be plucked out of the harmonic segment 1:2:3:4:6:8:9:12:16:18:24:27:32:36:48:54:64:72:81:96:108:128:... e.g. 6:8:9 is a sus4 chord.
Simple otonal chords can be plucked out of the harmonic segment 1:2:3:4:6:8:9:12:16:18:24:27:32:36:48:54:64:72:81:96:108:128:... e.g. 6:8:9 is a sus4 chord.
Line 87: Line 87:
The <math>2\,.\sqrt{\frac{3}{2}}</math> part can be notated using [[neutral chain-of-fifths notation]]. This introduces a neutral interval quality between major and minor, semisharps (a.k.a. demisharps) etc.
The <math>2\,.\sqrt{\frac{3}{2}}</math> part can be notated using [[neutral chain-of-fifths notation]]. This introduces a neutral interval quality between major and minor, semisharps (a.k.a. demisharps) etc.


A representative 3L&nbsp;4s 4|2 (kleeth) scale would be spelled {{nowrap|C, D, E{{demiflat2}}, F, G, A{{demiflat2}}, B{{demiflat2}}, (C)}}
A representative {{nowrap|3L 4s 4{{!}}2}} (kleeth) scale would be spelled {{nowrap|C, D, E{{demiflat2}}, F, G, A{{demiflat2}}, B{{demiflat2}}, (C)}}


=== Semioctaves ===
=== Semioctaves ===
In traditional notation the octave spans 7 diasteps which means that it splits into two interordinal {{sfrac|3|1|2}} diasteps or two perfect 4.5ths ("four-and-a-halves") if we wish to remain backwards compatible with the 1-indexed traditional notation.
In traditional notation the octave spans 7 diasteps which means that it splits into two interordinal {{sfrac|3|1|2}} diasteps or two perfect 4.5ths ("four-and-a-halves") if we wish to remain backwards compatible with the 1-indexed traditional notation.


Intervals retain their quality when the frequency ratio is multiplied by the perfect semioctave <math>\sqrt{2}</math>, e.g. {{nowrap|M6 &minus; P4.5 {{=}} M2.5 {{=}} ({{frac|9|8}})<sup>3/2</sup>}}.
Intervals retain their quality when the frequency ratio is multiplied by the perfect semioctave <math>\sqrt{2}</math>, e.g. {{nowrap|M6 P4.5 {{=}} M2.5 {{=}} ({{frac|9|8}})<sup>3/2</sup>}}.


Relative interordinal intervals are either called by their double i.e. M2.5 is a major semifourth due to being exactly the half of an augmented fourth (Aug4), or by simply adding the suffix "-and-a-halfth" i.e. "major second-and-a-halfth". The semisecond gets the special nickname "sesquith".
Relative interordinal intervals are either called by their double i.e. M2.5 is a major semifourth due to being exactly the half of an augmented fourth (Aug4), or by simply adding the suffix "-and-a-halfth" i.e. "major second-and-a-halfth". The semisecond gets the special nickname "sesquith".
Line 103: Line 103:
! Nominal !! Pronuciation !! Meaning !! Ratio with middle C !! Cents
! Nominal !! Pronuciation !! Meaning !! Ratio with middle C !! Cents
|-
|-
| γ || gam || C + P4.5 || <math>\sqrt{2}</math> || 600.000
| γ || gam || C + P4.5 || <math>\sqrt{2}</math> || 600.000
|-
|-
| δ || del || D + P4.5 || <math>\sqrt{\frac{81}{32}}</math> || 803.910
| δ || del || D + P4.5 || <math>\sqrt{\frac{81}{32}}</math> || 803.910
Line 120: Line 120:
Where to put the greek notes on a staff is still being decided. Probably on the same lines as traditional notes but with distinct noteheads. E.g. a middle η would look like a middle C, but with an upwards pointing triangular notehead.
Where to put the greek notes on a staff is still being decided. Probably on the same lines as traditional notes but with distinct noteheads. E.g. a middle η would look like a middle C, but with an upwards pointing triangular notehead.


A representative 10L&nbsp;2s 10|0(2) scale would be spelled C, η, D, α, E, β, γ, G, δ, A, ε, B, (C).
A representative {{nowrap|10L 2s 10{{!}}0(2)}} scale would be spelled C, η, D, α, E, β, γ, G, δ, A, ε, B, (C).


An alternative solution, although one which looses bijectivity, is to keep only the traditional nominals while having a dedicated accidental pair for <math>\sqrt{\frac{256}{243}}</math> (this was proposed by [[User:CompactStar|CompactStar]]).
An alternative solution, although one which looses bijectivity, is to keep only the traditional nominals while having a dedicated accidental pair for <math>\sqrt{\frac{256}{243}}</math> (this was proposed by [[User:CompactStar|CompactStar]]).
Line 146: Line 146:


=== Hemipyth ===
=== Hemipyth ===
Putting it all together we can now spell a squashed Ionian scale, 10L&nbsp;4s 10|2(2):
Putting it all together we can now spell a squashed Ionian scale, {{nowrap|10L 4s 10{{!}}2(2)}}:


C, η, D, α{{demiflat2}}, E{{demiflat2}}, β{{demiflat2}}, F{{demisharp2}}, γ, G, δ, A{{demiflat2}}, ε{{demiflat2}}, B{{demiflat2}}, ζ{{demisharp2}}, (C)
C, η, D, α{{demiflat2}}, E{{demiflat2}}, β{{demiflat2}}, F{{demisharp2}}, γ, G, δ, A{{demiflat2}}, ε{{demiflat2}}, B{{demiflat2}}, ζ{{demisharp2}}, (C)
Line 163: Line 163:
Simple hemipyth chords can be plucked out of the square root of the Pythagorean segment <math>1:</math> <math>\sqrt{2}:</math> <math>\sqrt{3}:2:</math> <math>\sqrt{6}:</math> <math>\sqrt{8}:3:</math> <math>\sqrt{12}:4:</math> <math>\sqrt{18}:</math> <math>\sqrt{24}:</math> <math>\sqrt{27}:</math> <math>\sqrt{32}:6:</math> <math>\sqrt{48}:</math> <math>\sqrt{54}:8:</math> <math>\sqrt{72}:9:</math> <math>\sqrt{96}:</math> <math>\sqrt{108}:</math> <math>\sqrt{128}:</math> <math>\ldots</math> e.g. <math>2:\sqrt{6}:3</math> is a neutral chord where spicy tension can be added by including the semioctave for <math>2:\sqrt{6}:\sqrt{8}:3</math> with no increase in complexity as far as the generator of the subgroup is concerned.
Simple hemipyth chords can be plucked out of the square root of the Pythagorean segment <math>1:</math> <math>\sqrt{2}:</math> <math>\sqrt{3}:2:</math> <math>\sqrt{6}:</math> <math>\sqrt{8}:3:</math> <math>\sqrt{12}:4:</math> <math>\sqrt{18}:</math> <math>\sqrt{24}:</math> <math>\sqrt{27}:</math> <math>\sqrt{32}:6:</math> <math>\sqrt{48}:</math> <math>\sqrt{54}:8:</math> <math>\sqrt{72}:9:</math> <math>\sqrt{96}:</math> <math>\sqrt{108}:</math> <math>\sqrt{128}:</math> <math>\ldots</math> e.g. <math>2:\sqrt{6}:3</math> is a neutral chord where spicy tension can be added by including the semioctave for <math>2:\sqrt{6}:\sqrt{8}:3</math> with no increase in complexity as far as the generator of the subgroup is concerned.


Here is a [https://xenpaper.com/#%7B58edo%7D%0A%23_5L_2s_5%7C1_(Ionian)%0A0_10_20_24_34_44_54_58_54_44_34_24_20_10_0%0A....%0A%23_3L_4s_4%7C2_(kleeth)%0A0_10_17_24_34_41_51_58_51_41_34_24_17_10_0%0A....%0A%23_10L_2s_10%7C0(2)%0A0_5_10_15_20_25_29_34_39_44_49_54_58_54_49_44_39_34_29_25_20_15_10_5_0%0A....%0A%23_5L_4s_6%7C2_(Stellerian)%0A0_10_12_22_24_34_44_46_56_58_56_46_44_34_24_22_12_10_0%0A....%0A%23_10L_4s_10%7C2(2)_(Squashed_Ionian)%0A0_5_10_12_17_22_27_29_34_39_41_46_51_56_58_56_51_46_41_39_34_29_27_22_17_12_10_5_0%0A....%0A%23_4L_6s_4%7C4(2)_(Pacific)%0A0_5_12_17_24_29_34_41_46_53_58_53_46_41_34_29_24_17_12_5_0 Xenpaper demo] of all five representative scales listed above.
Here is a [https://luphoria.com/xenpaper/#%7B58edo%7D%0A%23_5L_2s_5%7C1_(Ionian)%0A0_10_20_24_34_44_54_58_54_44_34_24_20_10_0%0A....%0A%23_3L_4s_4%7C2_(kleeth)%0A0_10_17_24_34_41_51_58_51_41_34_24_17_10_0%0A....%0A%23_10L_2s_10%7C0(2)%0A0_5_10_15_20_25_29_34_39_44_49_54_58_54_49_44_39_34_29_25_20_15_10_5_0%0A....%0A%23_5L_4s_6%7C2_(Stellerian)%0A0_10_12_22_24_34_44_46_56_58_56_46_44_34_24_22_12_10_0%0A....%0A%23_10L_4s_10%7C2(2)_(Squashed_Ionian)%0A0_5_10_12_17_22_27_29_34_39_41_46_51_56_58_56_51_46_41_39_34_29_27_22_17_12_10_5_0%0A....%0A%23_4L_6s_4%7C4(2)_(Pacific)%0A0_5_12_17_24_29_34_41_46_53_58_53_46_41_34_29_24_17_12_5_0 Xenpaper demo] of all five representative scales listed above.


== Musical significance ==
== Musical significance ==
Line 182: Line 182:


=== Signposts ===
=== Signposts ===
Due to their low damage in supporting temperaments, the octave&nbsp;({{sfrac|2|1}}), semioctave&nbsp;<math>\left(\sqrt{2}\right)</math>, perfect&nbsp;fifth&nbsp;({{sfrac|3|2}}), perfect&nbsp;fourth&nbsp;({{sfrac|4|3}}), neutral&nbsp;third&nbsp;<math>\left(\sqrt{\frac{3}{2}}\right)</math>, neutral&nbsp;sixth&nbsp;<math>\left(\sqrt{\frac{8}{3}}\right)</math>, semifourth&nbsp;<math>\left(\sqrt{\frac{4}{3}}\right)</math>, semitwelfth&nbsp;<math>\left(\sqrt{3}\right)</math>, "hemitone"&nbsp;<math>\left(\sqrt{\frac{9}{8}}\right)</math>, and "contrahemitone"&nbsp;<math>\left(\sqrt{\frac{32}{9}}\right)</math> all provide good signposts for navigating around otherwise unfamiliar scales.
Due to their low damage in supporting temperaments, the octave&nbsp;({{frac|2|1}}), semioctave&nbsp;<math>\left(\sqrt{2}\right)</math>, perfect&nbsp;fifth&nbsp;({{frac|3|2}}), perfect&nbsp;fourth&nbsp;({{frac|4|3}}), neutral&nbsp;third&nbsp;<math>\left(\sqrt{\frac{3}{2}}\right)</math>, neutral&nbsp;sixth&nbsp;<math>\left(\sqrt{\frac{8}{3}}\right)</math>, semifourth&nbsp;<math>\left(\sqrt{\frac{4}{3}}\right)</math>, semitwelfth&nbsp;<math>\left(\sqrt{3}\right)</math>, "hemitone"&nbsp;<math>\left(\sqrt{\frac{9}{8}}\right)</math>, and "contrahemitone"&nbsp;<math>\left(\sqrt{\frac{32}{9}}\right)</math> all provide good signposts for navigating around otherwise unfamiliar scales.


While untempered semitones usually come as unequal pairs consisting of an augmented unison and a minor second, the "hemitone" is always exactly the geometric half of a {{sfrac|9|8}} whole tone. The "contrahemitone" is its octave-complement.
While untempered semitones usually come as unequal pairs consisting of an augmented unison and a minor second, the "hemitone" is always exactly the geometric half of a {{sfrac|9|8}} whole tone. The "contrahemitone" is its octave-complement.
Line 286: Line 286:
[[File:The_Hymn_of_Pergele.mp3]]
[[File:The_Hymn_of_Pergele.mp3]]


The Hymn of Pergele, a short piece in [[Hemipyth]][10] 4|4(2) (Pacific mode of [[4L&nbsp;6s]]), written by [[User:2^67-1|Cole]].
The Hymn of Pergele, a short piece in {{nowrap|[[Hemipyth]][10] 4{{!}}4(2)}} (Pacific mode of [[4L&nbsp;6s]]), written by [[User:2^67-1|Cole]].


[[Category:Rank 2]]
[[Category:Rank 2]]
[[Category:Subgroup]]
[[Category:Subgroup]]
[[Category:Listen]]