3/2: Difference between revisions
m Removed random unordered list circle |
→In regular temperament theory: I'll do you one better |
||
(10 intermediate revisions by 3 users not shown) | |||
Line 7: | Line 7: | ||
| ro = 3/2 (ro) | | ro = 3/2 (ro) | ||
}} | }} | ||
{{Infobox | {{Infobox interval | ||
| Name = just perfect fifth | | Name = just perfect fifth | ||
| Color name = w5, wa 5th | | Color name = w5, wa 5th | ||
Line 14: | Line 14: | ||
{{Wikipedia|Perfect fifth}} | {{Wikipedia|Perfect fifth}} | ||
'''3/2''', the '''just perfect fifth''', is a very [[consonance|consonant]] interval, due to the numerator and denominator of its ratio being very small numbers. Only the [[2/1|octave]] and the [[3/1| | '''3/2''', the '''just perfect fifth''', is a very [[consonance|consonant]] interval, due to the numerator and denominator of its ratio being very small numbers. Only the [[2/1|octave]] and the [[3/1|tritave]] have smaller numbers. | ||
== Properties == | == Properties == | ||
Line 27: | Line 27: | ||
=== In regular temperament theory === | === In regular temperament theory === | ||
Because 3/2 | Because 3/2 is a very simple and concordant interval, it is still recognizable even when heavily tempered. Often it is tempered so that an octave-reduced stack of fourths or fifths approximates some other interval. Some examples: | ||
[[Meantone]] temperament flattens the fifth from just such that the major third generated by stacking four fifths is closer to (or even identical to) 5/4. The minor 3rd generated by stacking three fourths is closer to 6/5. | [[Meantone]] temperament flattens the fifth from just (to around 695 cents) such that the major third generated by stacking four fifths is closer to (or even identical to) 5/4. The minor 3rd generated by stacking three fourths is closer to 6/5. | ||
[[Superpyth]] temperaments ''sharpen'' the fifth from just so that the major third is closer to 9/7 and the minor third is closer to 7/6. Thus the minor 7th 16/9 approximates 7/4 instead of 9/5. | [[Superpyth]] temperaments ''sharpen'' the fifth from just so that the major third is closer to 9/7 and the minor third is closer to 7/6. Thus the minor 7th 16/9 approximates 7/4 instead of 9/5. | ||
[[Schismatic]] temperament | * One may choose to prioritize the accurate tuning of either the thirds or the harmonic seventh, leading to a ~710c tuning when prioritizing the thirds, or a ~715c tuning when prioritizing 7/4. | ||
[[Schismatic|Schismic]] temperament adjusts the fifth such that the ''diminished'' fourth generated by stacking eight fourths approximates 5/4. As this is already a close approximation, the tuning of the fifth can be varied around its just tuning, but is most simply flattened by a tiny amount. Thus a triad with 5/4 is written as {{nowrap|{{dash|C, F♭, G}}}} (unless the notation has accidentals for [[81/80]], e.g. {{nowrap|{{dash|C, vE, G}}}}). | |||
* Garibaldi temperament is an extension of schismatic that sharpens the fifth so that the small interval between the major third and diminished fourth can also be used to create simple 7-limit intervals. | |||
== Approximations by edos == | == Approximations by edos == | ||
12edo approximates 3/2 to within only | 12edo approximates 3/2 to within only 2{{c}}. [[29edo]], [[41edo]], and [[53edo]] are even more accurate. In regards to [[telicity]], while 12edo is a 2-strong 3-2 [[telic]] system, 53edo is notably a 3-strong 3-2 telic system. | ||
The following edos (up to 200) approximate 3/2 to within both | The following edos (up to 200) approximate 3/2 to within both 7{{c}} and 7%. Errors are unsigned so that the table can be sorted by them. The arrow column indicates a sharp (↑) or flat (↓) fifth. | ||
{| class="wikitable sortable right-1 center-2 right-3 right-4 center-5" | {| class="wikitable sortable right-1 center-2 right-3 right-4 center-5" | ||
|- | |- | ||
! [[Edo]] | ! [[Edo]] | ||
! class="unsortable" | | ! class="unsortable" | Deg\edo | ||
! Absolute<br> | ! Absolute <br>error ([[Cent|¢]]) | ||
! Relative | ! Relative <br>error (%) | ||
! ↕ | |||
! &# | ! class="unsortable" | Equally accurate <br>multiples | ||
! class="unsortable" | Equally accurate | |||
multiples | |||
|- | |- | ||
| [[12edo|12]] || 7\12 || 1.955 || 1.955 ||↓ || [[24edo|14\24]], [[36edo|21\36]] | | [[12edo|12]] || 7\12 || 1.955 || 1.955 || ↓ || [[24edo|14\24]], [[36edo|21\36]] | ||
|- | |- | ||
| [[17edo|17]] || 10\17 || 3.927 || 5.564 ||↑ || | | [[17edo|17]] || 10\17 || 3.927 || 5.564 || ↑ || | ||
|- | |- | ||
| [[29edo|29]] || 17\29 || 1.493 || 3.609 ||↑ || | | [[29edo|29]] || 17\29 || 1.493 || 3.609 || ↑ || | ||
|- | |- | ||
| [[41edo|41]] || 24\41 || 0.484 || 1.654 ||↑ || [[82edo|48\82]], [[123edo|72\123]], [[164edo|96\164]] | | [[41edo|41]] || 24\41 || 0.484 || 1.654 || ↑ || [[82edo|48\82]], [[123edo|72\123]], [[164edo|96\164]] | ||
|- | |- | ||
| [[53edo|53]] || 31\53 || 0.068 || 0.301 ||↓ || [[106edo|62\106]], [[159edo|93\159]] | | [[53edo|53]] || 31\53 || 0.068 || 0.301 || ↓ || [[106edo|62\106]], [[159edo|93\159]] | ||
|- | |- | ||
| [[65edo|65]] || 38\65 || 0.416 || 2.256 ||↓ || [[130edo|76\130]], [[195edo|114\195]] | | [[65edo|65]] || 38\65 || 0.416 || 2.256 || ↓ || [[130edo|76\130]], [[195edo|114\195]] | ||
|- | |- | ||
| [[70edo|70]] || 41\70 || 0.902 || 5.262 ||↑ || | | [[70edo|70]] || 41\70 || 0.902 || 5.262 || ↑ || | ||
|- | |- | ||
| [[77edo|77]] || 45\77 || 0.656 || 4.211 ||↓ || | | [[77edo|77]] || 45\77 || 0.656 || 4.211 || ↓ || | ||
|- | |- | ||
| [[89edo|89]] || 52\89 || 0.831 || 6.166 ||↓ || | | [[89edo|89]] || 52\89 || 0.831 || 6.166 || ↓ || | ||
|- | |- | ||
| [[94edo|94]] || 55\94 || 0.173 || 1.352 ||↑ || [[188edo|110\188]] | | [[94edo|94]] || 55\94 || 0.173 || 1.352 || ↑ || [[188edo|110\188]] | ||
|- | |- | ||
| [[111edo|111]] || 65\111 || 0.748 || 6.916 ||↑ || | | [[111edo|111]] || 65\111 || 0.748 || 6.916 || ↑ || | ||
|- | |- | ||
| [[118edo|118]] || 69\118 || 0.260 || 2.557 ||↓ || | | [[118edo|118]] || 69\118 || 0.260 || 2.557 || ↓ || | ||
|- | |- | ||
| [[135edo|135]] || 79\135 || 0.267 || 3.006 ||↑ || | | [[135edo|135]] || 79\135 || 0.267 || 3.006 ||↑ || | ||
|- | |- | ||
| [[142edo|142]] || 83\142 || 0.547 || 6.467 ||↓ || | | [[142edo|142]] || 83\142 || 0.547 || 6.467 || ↓ || | ||
|- | |- | ||
| [[147edo|147]] || 86\147 || 0.086 || 1.051 ||↑ || | | [[147edo|147]] || 86\147 || 0.086 || 1.051 || ↑ || | ||
|- | |- | ||
| [[171edo|171]] || 100\171 || 0.200 || 2.859 ||↓ || | | [[171edo|171]] || 100\171 || 0.200 || 2.859 || ↓ || | ||
|- | |- | ||
| [[176edo|176]] || 103\176 || 0.318 || 4.660 ||↑ || | | [[176edo|176]] || 103\176 || 0.318 || 4.660 || ↑ || | ||
|- | |- | ||
| [[183edo|183]] || 107\183 || 0.316 || 4.814 ||↓ || | | [[183edo|183]] || 107\183 || 0.316 || 4.814 || ↓ || | ||
|- | |- | ||
| [[200edo|200]] || 117\200 || 0.045 || 0.750 ||↑ || | | [[200edo|200]] || 117\200 || 0.045 || 0.750 || ↑ || | ||
|} | |} | ||
Edos can be classified by their approximation of 3/2 as: | Edos can be classified by their approximation of 3/2 as: | ||
*'''Superflat''' edos have fifths narrower than 4\7 = ~ | * '''Superflat''' edos have fifths narrower than {{nowrap|4\7 {{=}} ~686{{c}}}} | ||
*'''Perfect''' edos have fifths of exactly 4\7 | * '''Perfect''' edos have fifths of exactly 4\7 | ||
*'''Diatonic''' edos have fifths between 4\7 and 3\5 = | * '''Diatonic''' edos have fifths between 4\7 and {{nowrap|3\5 {{=}} 720{{c}}}} | ||
*'''Pentatonic''' have fifths of exactly 3\5 | * '''Pentatonic''' have fifths of exactly 3\5 | ||
*'''Supersharp''' edos have fifths wider than 3\5 | * '''Supersharp''' edos have fifths wider than 3\5 | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|+Comparison of the fifths of edos 5 to 31 | |+ style="font-size: 105%;" | Comparison of the fifths of edos 5 to 31 | ||
|- | |||
! Edo | ! Edo | ||
! Degree | ! Degree | ||
Line 103: | Line 108: | ||
! Error (¢) | ! Error (¢) | ||
|- | |- | ||
|[[5edo]] | | [[5edo]] | ||
| 3\5 | | 3\5 | ||
| 720.000 | | 720.000 | ||
| | | Pentatonic edo | ||
| +18.045 | | +18.045 | ||
|- | |- | ||
|[[7edo]] | | [[7edo]] | ||
| 4\7 | | 4\7 | ||
| 685.714 | | 685.714 | ||
| perfect edo | | perfect edo | ||
| | | −16.241 | ||
|- | |- | ||
|[[8edo]] | | [[8edo]] | ||
| 5\8 | | 5\8 | ||
| 750.000 | | 750.000 | ||
Line 121: | Line 126: | ||
| +48.045 | | +48.045 | ||
|- | |- | ||
|[[9edo]] | | [[9edo]] | ||
| 5\9 | | 5\9 | ||
| 666.667 | | 666.667 | ||
| superflat edo | | superflat edo | ||
| | | −35.288 | ||
|- | |- | ||
|[[10edo]] | | [[10edo]] | ||
| 6\10 | | 6\10 | ||
| 720.000 | | 720.000 | ||
Line 133: | Line 138: | ||
| +18.045 | | +18.045 | ||
|- | |- | ||
|[[11edo]] | | [[11edo]] | ||
| 6\11 | | 6\11 | ||
| 654.545 | | 654.545 | ||
| superflat edo | | superflat edo | ||
| | | −47.41 | ||
|- | |- | ||
|[[12edo]] | | [[12edo]] | ||
| 7\12 | | 7\12 | ||
| 700.000 | | 700.000 | ||
| diatonic edo | | diatonic edo | ||
| | | −1.955 | ||
|- | |- | ||
|[[13edo]] | | [[13edo]] | ||
| 8\13 | | 8\13 | ||
| 738.462 | | 738.462 | ||
Line 151: | Line 156: | ||
| +36.507 | | +36.507 | ||
|- | |- | ||
|[[14edo]] | | [[14edo]] | ||
| 8\14 | | 8\14 | ||
| 685.714 | | 685.714 | ||
| perfect edo | | perfect edo | ||
| | | −16.241 | ||
|- | |- | ||
|[[15edo]] | | [[15edo]] | ||
| 9\15 | | 9\15 | ||
| 720.000 | | 720.000 | ||
Line 163: | Line 168: | ||
| +18.045 | | +18.045 | ||
|- | |- | ||
|[[16edo]] | | [[16edo]] | ||
| 9\16 | | 9\16 | ||
| 675.000 | | 675.000 | ||
| superflat edo | | superflat edo | ||
| | | −26.955 | ||
|- | |- | ||
|[[17edo]] | | [[17edo]] | ||
| 10\17 | | 10\17 | ||
| 705.882 | | 705.882 | ||
Line 175: | Line 180: | ||
| +3.927 | | +3.927 | ||
|- | |- | ||
|[[18edo]] | | [[18edo]] | ||
| 11\18 | | 11\18 | ||
| 733.333 | | 733.333 | ||
Line 181: | Line 186: | ||
| +31.378 | | +31.378 | ||
|- | |- | ||
|[[19edo]] | | [[19edo]] | ||
| 11\19 | | 11\19 | ||
| 694.737 | | 694.737 | ||
| diatonic edo | | diatonic edo | ||
| | | −7.218 | ||
|- | |- | ||
|[[20edo]] | | [[20edo]] | ||
| 12\20 | | 12\20 | ||
| 720.000 | | 720.000 | ||
Line 193: | Line 198: | ||
| +18.045 | | +18.045 | ||
|- | |- | ||
|[[21edo]] | | [[21edo]] | ||
| 12\21 | | 12\21 | ||
| 685.714 | | 685.714 | ||
| perfect edo | | perfect edo | ||
| | | −16.241 | ||
|- | |- | ||
|[[22edo]] | | [[22edo]] | ||
| 13\22 | | 13\22 | ||
| 709.091 | | 709.091 | ||
Line 205: | Line 210: | ||
| +7.136 | | +7.136 | ||
|- | |- | ||
|[[23edo]] | | [[23edo]] | ||
| 13\23 | | 13\23 | ||
| 678.261 | | 678.261 | ||
| superflat edo | | superflat edo | ||
| | | −23.694 | ||
|- | |- | ||
|[[24edo]] | | [[24edo]] | ||
| 14\24 | | 14\24 | ||
| 700.000 | | 700.000 | ||
| diatonic edo | | diatonic edo | ||
| | | −1.955 | ||
|- | |- | ||
|[[25edo]] | | [[25edo]] | ||
| 15\25 | | 15\25 | ||
| 720.000 | | 720.000 | ||
Line 223: | Line 228: | ||
| +18.045 | | +18.045 | ||
|- | |- | ||
|[[26edo]] | | [[26edo]] | ||
| 15\26 | | 15\26 | ||
| 692.308 | | 692.308 | ||
| diatonic edo | | diatonic edo | ||
| | | −9.647 | ||
|- | |- | ||
|[[27edo]] | | [[27edo]] | ||
| 16\27 | | 16\27 | ||
| 711.111 | | 711.111 | ||
Line 235: | Line 240: | ||
| +9.156 | | +9.156 | ||
|- | |- | ||
|[[28edo]] | | [[28edo]] | ||
| 16\28 | | 16\28 | ||
| 685.714 | | 685.714 | ||
| perfect edo | | perfect edo | ||
| | | −16.241 | ||
|- | |- | ||
|[[29edo]] | | [[29edo]] | ||
| 17\29 | | 17\29 | ||
| 703.448 | | 703.448 | ||
Line 247: | Line 252: | ||
| +1.493 | | +1.493 | ||
|- | |- | ||
|[[30edo]] | | [[30edo]] | ||
| | | 18\30 | ||
| 720.000 | | 720.000 | ||
| pentatonic edo | | pentatonic edo | ||
| +18.045 | | +18.045 | ||
|- | |- | ||
|[[31edo]] | | [[31edo]] | ||
| 18\31 | | 18\31 | ||
| 696.774 | | 696.774 | ||
| diatonic edo | | diatonic edo | ||
| | | −5.181 | ||
|} | |} | ||