User:BudjarnLambeth/12edo as a 2.3.5.17.19 tuning: Difference between revisions

BudjarnLambeth (talk | contribs)
BudjarnLambeth (talk | contribs)
mNo edit summary
 
(128 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Idiosyncratic terms}}
{{Idiosyncratic terms}}


This is a user page, not one of the main wiki pages.  
This is a user page, '''not a real wiki page'''.  


This page is only opinion, not fact.
'''This page is only opinion, not fact.'''


This user page details how I personally assign each [[EDO]] to a [[subgroup]] of [[just intonation]].
Interpreting 12edo as a 2.3.5.17.19 system:


== Types of subgroups ==
== Intervals ==
* lim = [[Prime limit]]
<br>
* no-n = [[Subgroup|No-n subgroup]]
* dual = [[Dual-n|Dual-n subgroup]]
* EQ = [[Equalizer subgroup]]
* comp = [[Subgroup|Other composite subgroup]]
* nth-b [[Half-prime subgroup|Nth-basis subgroup]]
* frac = [[Subgroup|Other fractional subgroup]]


== How to choose a type ==
; 0c (0 [[cents]])
# If the edo has <40% [[relative error]] and <15-20c^ absolute error on all [[prime]]s in a [[prime limit]] 7 or higher, use that prime limit.
# If the edo has >40% relative error but <15-20c^ absolute error on any primes N where N is 11 or smaller, then use dual-N for all those primes; then also include every other prime as a single-prime up to the last prime before M, where M is the first prime above 11 with >40% relative error.
# If the edo has >40% relative error and >15-20c^ absolute error on any primes N where N is 11 or smaller, then use no-N for all those primes; then include every other prime up to the last prime before M, where M is the first or second^ prime above 11 to have >15-20c^ absolute error.
# An addition to the previous step: if the edo approximates any less-than-20 multiple of an excluded prime N, with <15-20c^ absolute error, then turn the edo's subgroup into a composite subgroup, and include that multiple as a [[basis element]].
# Another addition to the previous step: if the edo approximates any 30-integer-limit interval of an excluded prime N, with <~10c^ absolute error, then turn the edo's subgroup into a fractional subgroup, and include that multiple as a basis element, or include a fractional basis element which would make that interval accessible.
# If none of the above cases are true, but the edo  <15-20c^ absolute error on any primes N where N is 11 or smaller on all primes in a prime limit 7 or higher, use that prime limit. If that is the case for all but a small number^ of primes P, then just use the no-P version of the prime limit.
# Avoid having more than one "no-n" where n is a prime 13 or higher. Just draw the cutoff there and leave out the second n and all primes higher than it.
# Avoid having any "dual-n" where n is a prime 17 or higher. Just draw the cutoff there and leave out n and all primes higher than it.


^Use your own discretion when deciding or strict or lenient to set this value on a per-edo basis. For example if an edo has a great 17/1, don't leave it out just because a rule says to, or if it has a terrible 11/1 that just scrapes over the line, don't include it just because a rule says to. Each edo is its own unique and wild creature, use your own discretion and bend these rules to fit the edo, not the other way around.
Behaves like: [[1/1|1:1]].


== Subgroups by EDO size (less dimensions) ==
Size categories taken from my [[human EDO size categorization]] (HUECAT).


=== Birthday EDOs (5-19) ===
; 100c
* [[5edo]]: 2.3.7 (no-n)
* [[6edo]]: 2.9.5 (comp)
* [[7edo]]: 2.3.11/3.11/5.13 (nth-b) (15th)
* [[8edo]]: 2.11/3.13/5.19 (nth-b) (15th)
* [[9edo]]: 2.5.11 (no-n)
* [[10edo]]: 2.3.7.13 (no-n)
* [[11edo]]: 2.9.15.7.11 (comp)
* [[12edo]]: 2.3.5 (lim)
* [[13edo]]: 2.9.5.11.13 (comp)
* [[14edo]]: 2.3.7/5.9/5.11/5.13 (nth-b) (5th)
* [[15edo]]: 2.3.5.7.11 (lim)
* [[16edo]]: 2.5.7.13 (no-n)
* [[17edo]]: 2.3.7.11.13 (no-n)
* [[18edo]]: 2.9.5.7/3.11 (nth-b) (3rd)
* [[19edo]]: 2.3.5.7.11.13 (lim)


=== Carousel EDOs (20-34) ===
Depending on context, behaves like: [[20/19|20:19]], [[19/18|19:18]], [[18/17|18:17]], [[17/16|17:16]] or [[16/15|16:15]].
* [[20edo]]: 2.3.7.11.13 (no-n)
* [[21edo]]: 2.3.5.7.13 (no-n)
* [[22edo]]: 2.3.5.7.11 (lim)
* [[23edo]]: 2.9.15.21.33.13 (comp)
* [[24edo]]: 2.3.5.7.11.13 (lim)
* [[25edo]]: 2.3.5.7.17 (no-n)
* [[26edo]]: 2.3.5.7.11.13 (lim)
* [[27edo]]: 2.3.5.7.11.13 (lim)
* [[28edo]]: 2.3.5.7.11.13 (lim)
* [[29edo]]: 2.3.5.7.11.13 (lim)
* [[30edo]]: 2.3+.3-.5.7.11 (dual)
* [[31edo]]: 2.3.5.7.11.13 (lim)
* [[32edo]]: 2.3.5.7.11.13 (lim)
* [[33edo]]: 2.3.5.7.11.13 (lim)
* [[34edo]]: 2.3.5.7+.7-.11 (dual)


=== Schoolbus EDOs (35-54) ===
* [[35edo]]: 2.3+.3-.5.7.11 (dual)
* [[36edo]]: 2.3.5+.5-.7.11+.11- (dual)
* [[37edo]]: 2.3.5.7.11.13 (lim)
* [[38edo]]: 2.3.5.7.11+.11- (dual)
* [[39edo]]: 2.3.5+.5-.7+.7-.11 (dual)
* [[40edo]]: 2.3+.3-.5.7.11 (dual)
* [[41edo]]: 2.3.5.7.11.13 (lim)
* [[42edo]]: 2.3+.3-.5+.5-.7.11 (dual)
* [[43edo]]: 2.3.5.7.11.13 (lim)
* [[44edo]]: 2.3.5.7+.7-.11 (dual)
* [[45edo]]: 2.3.5+.5-.7.11 (dual)
* [[46edo]]: 2.3.5.7.11.13 (lim)
* [[47edo]]: 2.3+.3-.5.7.11+.11- (dual)
* [[48edo]]: 2.3.5+.5-.7.11 (dual)
* [[49edo]]: 2.3.5.7+.7-.11+.11- (dual)
* [[50edo]]: 2.3.5.7.11.13 (lim)
* [[51edo]]: 2.3.5+.5-.7.11+.11- (dual)
* [[52edo]]: 2.3+.3-.5.7.11 (dual)
* [[53edo]]: 2.3.5.7.11.13 (lim)
* [[54edo]]: 2.3+.3-.5+.5-.7+.7-.11 (dual)


=== Double-decker EDOs (55-74) ===
; 200c
''(May complete later.)''


== Subgroups by EDO size (more dimensions) ==
Depending on context, behaves like: [[10/9|10:9]], [[19/17|19:17]], [[9/8|9:8]] or [[17/15|17:15]].


=== Birthday EDOs (5-19) ===
* [[5edo]]: 2.3.7 (no-n)
* [[6edo]]: 2.9.5 (comp)
* [[7edo]]: 2.3.11/3.11/5.13 (nth-b) (15th)
* [[8edo]]: 2.11/3.13/5.19 (nth-b) (15th)
* [[9edo]]: 2.5.11 (no-n)
* [[10edo]]: 2.3.7.13.17 (no-n)
* [[11edo]]: 2.9.15.7.11.17 (comp)
* [[12edo]]: 2.3.5.17.19 (no-n)
* [[13edo]]: 2.9.5.11.13.17 (comp)
* [[14edo]]: 2.3.7/5.9/5.11/5.13 (nth-b) (5th)
* [[15edo]]: 2.3.5.7.11 (lim)
* [[16edo]]: 2.5.7.13.19 (no-n)
* [[17edo]]: 2.3.7.11.13 (no-n)
* [[18edo]]: 2.9.5.7/3.11 (nth-b) (3rd)
* [[19edo]]: full [[43-limit]] (lim)


=== Carousel EDOs (20-34) ===
; 300c
* [[20edo]]: 2.3.7.11.13.17.19 (no-n)
* [[21edo]]: 2.3.5.7.13.17.19.23.29.31 (no-n)
* [[22edo]]: 2.3.5.7.11.17 (no-n)
* [[23edo]]: [[59-limit]] but with 3.5.7.11 removed and 9.15.21.33 added (comp)
* [[24edo]]: 2.3.5.7.11.13.17.19 (lim)
* [[25edo]]: 2.3.5.7.17.19.23 (no-n)
* [[26edo]]: 2.3.5.7.11.13.17 (lim)
* [[27edo]]: 2.3.5.7.11.13.17.19.23.29.31 (lim)
* [[28edo]]: no-17 [[43-limit]] (no-n)
* [[29edo]]: 2.3.5.7.11.13.19.23.29.31.37 (no-n)
* [[30edo]]: 2.3+.3-.5.7.11.13.17 (dual)
* [[31edo]]: 2.3.5.7.11.13.17.19.23 (lim)
* [[32edo]]: 2.3.5.7.11.13.17.19.23 (lim)
* [[33edo]]: 2.3.5.7.11.13.17.19.23.29 (lim)
* [[34edo]]: 2.3.5.7+.7-.11.13.17 (dual)


=== Schoolbus EDOs (35-54) ===
Depending on context, behaves like: [[20/17|20:17]], [[32/27|32:27]], [[19/16|19:16]] or [[6/5|6:5]].
* [[35edo]]: 2.3+.3-.5.7.11.17 (dual)
* [[36edo]]: dual-5 dual-11 [[29-limit]] (dual)
* [[37edo]]: full [[43-limit]] (lim)
* [[38edo]]: 2.3.5.7.11+.11-.13.17 (dual)
* [[39edo]]: 2.3.5+.5-.7+.7-.11.13 (dual)
* [[40edo]]: 2.3+.3-.5.7.11.13 (dual)
* [[41edo]]: 2.3.5.7.11.13.17.19 (lim)
* [[42edo]]: 2.3+.3-.5+.5-.7.11.13+.13- (dual)
* [[43edo]]: 2.3.5.7.11.13.17.19 (lim)
* [[44edo]]: dual-7 [[43-limit]] (dual)
* [[45edo]]: 2.3.5+.5-.7.11.13+.13-.17.19 (dual)
* [[46edo]]: 2.3.5.7.11.13.17 (lim)
* [[47edo]]: 2.3+.3-.5.7.11+.11-.13.17.19 (dual)
* [[48edo]]: dual-5 [[41-limit]] (dual)
* [[49edo]]: dual-7 dual-11 [[37-limit]] (dual)
* [[50edo]]: 2.3.5.7.11.13.17.19.23.29.31 (lim)
* [[51edo]]: 2.3.5+.5-.7.11+.11-.13 (dual)
* [[52edo]]: 2.3+.3-.5.7.11.13+.13- (dual)
* [[53edo]]: 2.3.5.7.11.13.17.19.23 (lim)
* [[54edo]]: 2.3+.3-.5+.5-.7+.7-.11.13.17 (dual)


=== Double-decker EDOs (55-74) ===
''(May complete later.)''


== Subgroups by subgroup type ==
; 400c
(This list uses the complex high-dimension versions.)


=== Full prime limit ===
Depending on context, behaves like: [[5/4|5:4]], [[34/27|34:27]], [[24/19|24:19]] or [[19/15|19:15]].
* [[15edo]]: 2.3.5.7.11 (lim)
* [[19edo]]: full [[43-limit]] (lim)
* [[24edo]]: 2.3.5.7.11.13.17.19 (lim)
* [[26edo]]: 2.3.5.7.11.13.17 (lim)
* [[27edo]]: 2.3.5.7.11.13.17.19.23.29.31 (lim)
* [[31edo]]: 2.3.5.7.11.13.17.19.23 (lim)
* [[32edo]]: 2.3.5.7.11.13.17.19.23 (lim)
* [[33edo]]: 2.3.5.7.11.13.17.19.23.29 (lim)
* [[37edo]]: full [[43-limit]] (lim)
* [[41edo]]: 2.3.5.7.11.13.17.19 (lim)
* [[43edo]]: 2.3.5.7.11.13.17.19 (lim)
* [[46edo]]: 2.3.5.7.11.13.17 (lim)
* [[50edo]]: 2.3.5.7.11.13.17.19.23.29.31 (lim)
* [[53edo]]: 2.3.5.7.11.13.17.19.23 (lim)


=== No-n ===
* [[5edo]]: 2.3.7 (no-n)
* [[9edo]]: 2.5.11 (no-n)
* [[10edo]]: 2.3.7.13.17 (no-n)
* [[12edo]]: 2.3.5.17.19 (no-n)
* [[16edo]]: 2.5.7.13.19 (no-n)
* [[17edo]]: 2.3.7.11.13 (no-n)
* [[20edo]]: 2.3.7.11.13.17.19 (no-n)
* [[21edo]]: 2.3.5.7.13.17.19.23.29.31 (no-n)
* [[22edo]]: 2.3.5.7.11.17 (no-n)
* [[25edo]]: 2.3.5.7.17.19.23 (no-n)
* [[28edo]]: no-17 [[43-limit]] (no-n)
* [[29edo]]: 2.3.5.7.11.13.19.23.29.31.37 (no-n)


=== Dual-n ===
; 500c
* [[30edo]]: 2.3+.3-.5.7.11.13.17 (dual)
* [[34edo]]: 2.3.5.7+.7-.11.13.17 (dual)
* [[35edo]]: 2.3+.3-.5.7.11.17 (dual)
* [[36edo]]: dual-5 dual-11 [[29-limit]] (dual)
* [[38edo]]: 2.3.5.7.11+.11-.13.17 (dual)
* [[39edo]]: 2.3.5+.5-.7+.7-.11.13 (dual)
* [[40edo]]: 2.3+.3-.5.7.11.13 (dual)
* [[42edo]]: 2.3+.3-.5+.5-.7.11.13+.13- (dual)
* [[44edo]]: dual-7 [[43-limit]] (dual)
* [[45edo]]: 2.3.5+.5-.7.11.13+.13-.17.19 (dual)
* [[47edo]]: 2.3+.3-.5.7.11+.11-.13.17.19 (dual)
* [[48edo]]: dual-5 [[41-limit]] (dual)
* [[49edo]]: dual-7 dual-11 [[37-limit]] (dual)
* [[51edo]]: 2.3.5+.5-.7.11+.11-.13 (dual)
* [[52edo]]: 2.3+.3-.5.7.11.13+.13- (dual)
* [[54edo]]: 2.3+.3-.5+.5-.7+.7-.11.13.17 (dual)


=== Equalizer ===
Depending on context, behaves like: [[4/3|4:3]] or [[27/20|27:20]].
No edos really fit this category.


=== Other composite ===
* [[6edo]]: 2.9.5 (comp)
* [[11edo]]: 2.9.15.7.11.17 (comp)
* [[13edo]]: 2.9.5.11.13.17 (comp)
* [[23edo]]: [[59-limit]] but with 3.5.7.11 removed and 9.15.21.33 added (comp)


=== Nth-basis ===
; 600c
Interestingly, all of these can be seen as 15th-basis. It might just be because in EDOs 2 is always pure, and 3 and 5 are the next simplest harmonics, so it just makes sense for them to show up as simple subgroup denominators.
* [[7edo]]: 2.3.11/3.11/5.13 (nth-b)
* [[8edo]]: 2.11/3.13/5.19 (nth-b)
* [[14edo]]: 2.3.7/5.9/5.11/5.13 (nth-b)
* [[18edo]]: 2.9.5.7/3.11 (nth-b)


=== Other fractional ===
Depending on context, behaves like: [[24/17|24:17]], [[17/12|17:12]] or [[27/19|27:19]].
No edos really fit this category.  


(''Technically any fractional subgroup can be said to be nth-basis, but if it were something absurdly big like 200th-basis, then it would belong in this category, not nth-basis, for the purpose of this list.''


''But, there aren't any edos where that kind of subgroup makes sense hence this category being empty.'')
; 700c


[[Category:Impression]]
Behaves like: [[3/2|3:2]].
 
 
; 800c
 
Depending on context, behaves like: [[30/19|30:19]], [[19/12|19:12]], [[27/17|27:17]] or [[8/5|8:5]].
 
 
; 900c
 
Depending on context, behaves like: [[5/3|5:3]], [[32/19|32:19]], [[27/16|27:16]] or [[17/10|17:10]].
 
 
; 1000c
 
Depending on context, behaves like: [[30/17|30:17]], [[16/9|16:9]] or [[9/5|9:5]].
 
 
; 1100c
 
Depending on context, behaves like: [[15/8|15:8]], [[32/17|32:17]], [[17/9|17:9]], [[36/19|36:19]] or [[19/10|19:10]].
 
 
; 1200c
 
Behaves like: [[2/1|2:1]].
<br>
 
 
== Chords ==
<br>
 
=== Common chords ===
My interpretation of what the just harmonies are, hiding behind common practice chords.
 
Note names and common practice titles assume C is the [[tonic]] but of course you can transpose to any other key.
 
Harmonies from ''inversions'' of the chord are in ''italics''.
 
 
; Major chord
 
Just harmonies approximated:
* 4:5:6
* ''2:3:5''
* ''3:4:5''
 
Note numbers: 0, 4, 7
 
Note names: C, E, G
 
Common practice title: C
 
 
; Minor chord
 
Just harmonies:
* 10:12:15
* 16:19:24
* ''12:16:19''
 
Note numbers: 0, 3, 7
 
Note names: C, Eb, G
 
Common practice title: Cm
 
 
; Diminished chord
 
Just harmonies:
* 17:20:24
* ''10:12:17''
* ''12:17:20''
 
Note numbers: 0, 3, 6
 
Note names: C, Eb, Gb
 
Common practice title: Cdim
 
 
; Major seventh chord
 
Just harmonies:
* 8:10:12:15
* 20:25:30:38
* ''15:19:20:25''
 
Note numbers: 0, 4, 7, 11
 
Note names: C, E, G, B
 
Common practice title: Cmaj7
 
 
; Minor seventh chord
 
Just harmonies:
* 10:12:15:18
* ''9:10:12:15''
 
Note numbers: 0, 3, 7, 10
 
Note names: C, Eb, G, Bb
 
Common practice title: Cmin7
 
 
; Dominant seventh chord
 
Just harmonies:
* 20:25:30:36
* ''15:18:20:25''
 
Note numbers: 0, 4, 7, 10
 
Note names: C, E, G, Bb
 
Common practice title: C7
 
 
; Sus2 chord
 
Just harmonies:
* 8:9:12
* 18:20:27
* ''6:8:9''
 
Note numbers: 0, 2, 7
 
Note names: C, D, G
 
Common practice title: Csus2
 
 
; Sus4 chord
 
Just harmonies:
* 6:8:9
* 20:25:27
 
Note numbers: 0, 5, 7
 
Note names: C, F, G
 
Common practice title: Csus4
 
 
; Augmented chord
 
Just harmonies:
* 12:15:19
* 15:18:20
* ''9:10:15''
 
Note numbers: 0, 4, 8
 
Note names: C, E, G#
 
Common practice title: Caug
 
 
; Dominant seventh chord
 
Just harmonies:
* 20:25:30:36
* ''15:18:20:25''
 
Note numbers: 0, 4, 7, 10
 
Note names: C, E, G, Bb
 
Common practice title: C7
 
 
; Major ninth chord
 
Just harmonies:
* 8:10:12:15:18
* ''8:9:10:12:15''
 
Note numbers: 0, 4, 7, 11, 14
 
Note names: C, E, G, B, D
 
Common practice title: Cmaj9
 
 
; Minor ninth chord
 
Just harmonies:
* 40:48:60:72:85
 
Note numbers: 0, 3, 7, 10, 14
 
Note names: C, Eb, G, Bb, D
 
Common practice title: Cmin9
 
 
; Dominant ninth chord
 
Just harmonies:
* 40:50:60:72:85
 
Note numbers: 0, 4, 7, 10, 14
 
Note names: C, E, G, Bb, D
 
Common practice title: C9
 
 
; Major eleventh chord
 
Just harmonies:
* 24:30:36:45:54:64
* ''24:28:30:32:36:45''
 
Note numbers: 0, 4, 7, 11, 14, 17
 
Note names: C, E, G, B, D, F
 
Common practice title: Cmaj11
 
 
; Minor eleventh chord
 
Just harmonies:
* 40:48:60:72:85:108
* ''40:48:54:60:72:85''
 
Note numbers: 0, 3, 7, 10, 14, 17
 
Note names: C, Eb, G, Bb, D, F
 
Common practice title: Cmin11
 
 
; Dominant eleventh chord
 
Just harmonies:
* 40:50:60:72:85:108
* ''40:50:54:60:72:85''
 
Note numbers: 0, 4, 7, 10, 14, 17
 
Note names: C, E, G, Bb, D, F
 
Common practice title: C11
<br>
 
 
=== Parent chords ===
My list of in my opinion the most harmonious 'parent chords' in 12edo, which you can use as palettes to build novel and pretty smaller chords. Choose one of these chords, take any subset of 2 or more notes from it, and you will make another, also harmonious chord.
 
These chords work particularly well if you drop the root note down an octave, better mimicking the shape of the [[harmonic series]]. (''For example you can play "chord 0-12-15-19-20-21-22-23" instead of "chord 0-3-7-8-9-10-11"'').
 
Note names and common practice titles assume C is the [[tonic]] but of course you can transpose to any other key.
 
 
; The over-9 parent chord of 12edo
 
Approximated [[just]] harmony: 9:10:12:16:17
 
Note numbers: 0, 2, 5, 10, 11
 
(With octave): 0, 12, 15, 17, 22, 23
 
Note names: C, D, F, A#/Bb, B
 
Common practice title: Dm7#5/C add(b6)
 
 
; The over-10 parent chord of 12edo
 
Just harmony: 10:12:15:16:17:18:19
 
Note numbers: 0, 3, 7, 8, 9, 10, 11
 
(With octave): 0, 12, 15, 19, 20, 21, 22, 23
 
Note names: C, D#/Eb, G, G#/Ab, A, A#/Bb, B
 
 
; The over-12 parent chord of 12edo
 
Just harmony: 12:15:16:17:18:19:20
 
Note numbers: 0, 4, 5, 6, 7, 8, 9
 
(With octave): 0, 12, 16, 17, 18, 19, 20, 21
 
Note names: C, E, F, F#/Gb, G, G#/Ab, A
 
 
; The over-15 parent chord of 12edo
 
Just harmony: 15:16:17:18:19:20:24:27
 
Note numbers: 1, 2, 3, 4, 5, 8, 10
 
(With octave): 0, 12, 13, 14, 15, 16, 17, 20, 22
 
Note names: C, C#/Db, D, D#/Eb, E, F, G#/Ab, A#/Bb
 
 
; The over-16 parent chord of 12edo
 
Just harmony: 16:17:18:19:20:24:30
 
Note numbers: 0, 1, 2, 3, 4, 7, 11
 
(With octave): 0, 12, 13, 14, 15, 16, 19, 23
 
Note names: C, C#/Db, D, D#/Eb, E, G, B
 
Common practice title: Cmaj9 add(m3,m9)
 
 
; The over-17 parent chord of 12edo
 
Just harmony: 17:18:19:20:24:27:30:32
 
Note numbers: 0, 1, 2, 3, 6, 8, 10, 11
 
(With octave): 0, 12, 13, 14, 15, 18, 20, 22, 23
 
Note names: C, C#/Db, D, D#/Eb, F#/Gb, G#/Ab, A#/Bb, B
 
 
; The over-18 parent chord of 12edo
 
Just harmony: 18:19:20:24:27:30:32:34
 
Note numbers: 0, 1, 2, 5, 7, 9, 10, 11
 
(With octave): 0, 12, 13, 14, 17, 19, 21, 22, 23
 
Note names: C, C#/Db, D, F, G, A, A#/Bb, B
 
 
; The over-19 parent chord of 12edo
 
Just harmony: 19:20:24:27:30:32:36
 
Note numbers: 0, 1, 4, 6, 8, 9, 11
 
(With octave): 0, 12, 13, 16, 18, 20, 21, 23
 
Note names: C, C#/Db, E, F#/Gb, G#/Ab, A, B
 
 
; The over-20 parent chord of 12edo
 
Just harmony: 20:24:25:27:30:32:34:36:38
 
Note numbers: 0, 3, 4, 5, 7, 8, 9, 10, 11
 
(With octave): 0, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23
 
Note names: C, D#/Eb, E, F, G, G#/Ab, A, A#/Bb, B
 
 
; The over-24 parent chord of 12edo
 
Just harmony: 24:27:30:32:34:36:38:40
 
Note numbers: 0, 2, 4, 5, 6, 7, 8, 9
 
(With octave): 0, 12, 14, 16, 17, 18, 19, 20, 21
 
Note names: C, D, E, F, F#/Gb, G, G#/Ab, A