58edo: Difference between revisions

ArrowHead294 (talk | contribs)
mNo edit summary
BudjarnLambeth (talk | contribs)
 
(30 intermediate revisions by 9 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{Wikipedia|58 equal temperament}}
{{Wikipedia|58 equal temperament}}
{{EDO intro|58}}
{{ED intro}}


== Theory ==
== Theory ==
58edo is a strong system in the [[11-limit|11]]-, [[13-limit|13]]- and [[17-limit]]. It is the smallest [[edo]] which is [[consistent]] through the [[17-odd-limit]], and is also the smallest distinctly consistent in the [[11-odd-limit]] (the first equal temperament to map the entire 11-odd-limit [[tonality diamond]] to distinct scale steps), and hence the first which can define a tempered version of the famous 43-note [[Harry Partch related scales|Genesis scale]] of [[Harry Partch]].  
58edo is a strong system in the [[11-limit|11-]], [[13-limit|13-]] and [[17-limit]]. It is the smallest [[edo]] which is [[consistent]] through the [[17-odd-limit]], and is also the smallest distinctly consistent in the [[11-odd-limit]] (the first equal temperament to map the entire 11-odd-limit [[tonality diamond]] to distinct scale steps), and hence the first which can define a tempered version of the famous 43-note [[Harry Partch related scales|Genesis scale]] of [[Harry Partch]].  


While the [[17/1|17th harmonic]] is a cent and a half flat, the harmonics below it are all a little sharp, giving it the sound of a sharp system. 58 = 2 × 29, and 58edo shares the same excellent fifth with [[29edo]].
While the [[17/1|17th harmonic]] is a cent and a half flat, the harmonics below it are all a little sharp, giving it the sound of a sharp system. Since {{nowrap|58 {{=}} 2 × 29}}, 58edo shares the same excellent perfect fifth with [[29edo]]. It is the last edo to have exactly one [[5L 2s|diatonic]] perfect fifth and no [[5edo]] or [[7edo]] fifths.  


As an equal temperament, 58et tempers out [[2048/2025]], [[126/125]], [[1728/1715]], [[144/143]], [[176/175]], [[896/891]], [[243/242]], [[5120/5103]], [[351/350]], [[364/363]], [[441/440]], and [[540/539]]. It [[support]]s [[hemififths]], [[myna]], [[diaschismic]], [[harry]], [[mystery]], [[buzzard]], [[thuja]] [[regular temperament|temperament]]s plus a number of [[gravity family]] extensions, and supplies the [[optimal patent val]] for the 7-, 11- and 13-limit diaschismic, 11- and 13-limit hemififths, 11- and 13-limit thuja, and 13-limit myna. It also supplies the optimal patent val for the 13-limit rank-3 temperaments [[thrush]], [[bluebird]], [[aplonis]] and [[jofur]].
As an equal temperament, 58et [[tempering out|tempers out]] [[2048/2025]] in the [[5-limit]]; [[126/125]], [[1728/1715]], and [[5120/5103]] in the [[7-limit]]; [[176/175]], [[243/242]], [[441/440]], [[540/539]], and [[896/891]] in the 11-limit; [[144/143]], [[351/350]], [[364/363]] in the 13-limit. It [[support]]s [[hemififths]], [[myna]], [[diaschismic]], [[harry]], [[mystery]], [[buzzard]], [[thuja]] [[regular temperament|temperament]]s plus a number of [[gravity family]] [[extension]]s, and supplies the [[optimal patent val]] for the 7-, 11- and 13-limit diaschismic, 11- and 13-limit hemififths, 11- and 13-limit thuja, and 13-limit myna. It also supplies the optimal patent val for the 13-limit rank-3 temperaments [[thrush]], [[bluebird]], [[aplonis]] and [[jofur]].


Of all edos which map the syntonic comma ([[81/80]]) to 1 step by patent val, 58edo is the one with the step size closest to 81/80, with one step of 58edo being less than 1{{cent}} narrower than the just interval.
Of all edos which map the syntonic comma ([[81/80]]) to 1 step by patent val, 58edo is the one with the step size closest to 81/80, with one step of 58edo being less than 1{{cent}} narrower than the just interval.
Line 16: Line 16:


=== Subsets and supersets ===
=== Subsets and supersets ===
58edo contains [[2edo]] and [[29edo]] as subsets.  
58edo contains [[2edo]] and [[29edo]] as subsets.


== Intervals ==
== Intervals ==
{| class="wikitable center-all right-2 left-3 left-4""
{| class="wikitable center-all right-2 left-3 left-4""
|-
|-
! #
! #
! Cents
! Cents
! Approximate ratios
! Approximate ratios*
! [[Ups and downs notation]]
! [[Ups and downs notation]]
|-
|-
| 0
| 0
| 0.00
| 0.0
| [[1/1]]
| [[1/1]]
| {{UDnote|step=0}}
| {{UDnote|step=0}}
|-
|-
| 1
| 1
| 20.69
| 20.7
| [[56/55]], [[64/63]], [[81/80]], [[128/125]]
| [[56/55]], [[64/63]], [[81/80]], [[91/90]], [[105/104]]
| {{UDnote|step=1}}
| {{UDnote|step=1}}
|-
|-
| 2
| 2
| 41.38
| 41.4
| [[36/35]], [[49/48]], [[50/49]], [[55/54]]
| [[36/35]], [[40/39]], [[45/44]], [[49/48]], [[50/49]], [[55/54]]
| {{UDnote|step=2}}
| {{UDnote|step=2}}
|-
|-
| 3
| 3
| 62.07
| 62.1
| [[26/25]], [[27/26]], [[28/27]], [[33/32]]
| [[26/25]], [[27/26]], [[28/27]], [[33/32]]
| {{UDnote|step=3}}
| {{UDnote|step=3}}
|-
|-
| 4
| 4
| 82.76
| 82.8
| [[25/24]], [[21/20]], [[22/21]]
| [[21/20]], [[22/21]], ''[[25/24]]''
| {{UDnote|step=4}}
| {{UDnote|step=4}}
|-
|-
| 5
| 5
| 103.45
| 103.4
| [[16/15]], [[17/16]], [[18/17]]
| [[16/15]], [[17/16]], [[18/17]]
| {{UDnote|step=5}}
| {{UDnote|step=5}}
|-
|-
| 6
| 6
| 124.14
| 124.1
| [[14/13]], [[15/14]], [[27/25]]
| [[14/13]], [[15/14]]
| {{UDnote|step=6}}
| {{UDnote|step=6}}
|-
|-
| 7
| 7
| 144.83
| 144.8
| [[12/11]], [[13/12]]
| [[12/11]], [[13/12]]
| {{UDnote|step=7}}
| {{UDnote|step=7}}
|-
|-
| 8
| 8
| 165.52
| 165.5
| [[11/10]]
| [[11/10]]
| {{UDnote|step=8}}
| {{UDnote|step=8}}
|-
|-
| 9
| 9
| 186.21
| 186.2
| [[10/9]]
| [[10/9]]
| {{UDnote|step=9}}
| {{UDnote|step=9}}
|-
|-
| 10
| 10
| 206.90
| 206.9
| [[9/8]], [[17/15]]
| [[9/8]], [[17/15]]
| {{UDnote|step=10}}
| {{UDnote|step=10}}
|-
|-
| 11
| 11
| 227.59
| 227.6
| [[8/7]]
| [[8/7]]
| {{UDnote|step=11}}
| {{UDnote|step=11}}
|-
|-
| 12
| 12
| 248.28
| 248.3
| [[15/13]]
| [[15/13]]
| {{UDnote|step=12}}
| {{UDnote|step=12}}
|-
|-
| 13
| 13
| 268.97
| 269.0
| [[7/6]]
| [[7/6]]
| {{UDnote|step=13}}
| {{UDnote|step=13}}
|-
|-
| 14
| 14
| 289.66
| 289.7
| [[13/11]], [[20/17]]
| [[13/11]], [[20/17]]
| {{UDnote|step=14}}
| {{UDnote|step=14}}
|-
|-
| 15
| 15
| 310.34
| 310.3
| [[6/5]]
| [[6/5]]
| {{UDnote|step=15}}
| {{UDnote|step=15}}
|-
|-
| 16
| 16
| 331.03
| 331.0
| [[17/14]]
| [[17/14]], [[40/33]]
| {{UDnote|step=16}}
| {{UDnote|step=16}}
|-
|-
| 17
| 17
| 351.72
| 351.7
| [[11/9]], [[16/13]]
| [[11/9]], [[16/13]]
| {{UDnote|step=17}}
| {{UDnote|step=17}}
|-
|-
| 18
| 18
| 372.41
| 372.4
| [[21/17]]
| [[21/17]], [[26/21]]
| {{UDnote|step=18}}
| {{UDnote|step=18}}
|-
|-
| 19
| 19
| 393.10
| 393.1
| [[5/4]]
| [[5/4]]
| {{UDnote|step=19}}
| {{UDnote|step=19}}
|-
|-
| 20
| 20
| 413.79
| 413.8
| [[14/11]]
| [[14/11]]
| {{UDnote|step=20}}
| {{UDnote|step=20}}
|-
|-
| 21
| 21
| 434.48
| 434.5
| [[9/7]]
| [[9/7]]
| {{UDnote|step=21}}
| {{UDnote|step=21}}
|-
|-
| 22
| 22
| 455.17
| 455.2
| [[13/10]], [[17/13]], [[22/17]]
| [[13/10]], [[17/13]], [[22/17]]
| {{UDnote|step=22}}
| {{UDnote|step=22}}
|-
|-
| 23
| 23
| 475.86
| 475.9
| [[21/16]]
| [[21/16]]
| {{UDnote|step=23}}
| {{UDnote|step=23}}
|-
|-
| 24
| 24
| 496.55
| 496.6
| [[4/3]]
| [[4/3]]
| {{UDnote|step=24}}
| {{UDnote|step=24}}
|-
|-
| 25
| 25
| 517.24
| 517.2
| [[27/20]]
| [[27/20]]
| {{UDnote|step=25}}
| {{UDnote|step=25}}
|-
|-
| 26
| 26
| 537.93
| 537.9
| [[15/11]]
| [[15/11]]
| {{UDnote|step=26}}
| {{UDnote|step=26}}
|-
|-
| 27
| 27
| 558.62
| 558.6
| [[11/8]], [[18/13]]
| [[11/8]], [[18/13]]
| {{UDnote|step=27}}
| {{UDnote|step=27}}
|-
|-
| 28
| 28
| 579.31
| 579.3
| [[7/5]]
| [[7/5]]
| {{UDnote|step=28}}
| {{UDnote|step=28}}
|-
|-
| 29
| 29
| 600.00
| 600.0
| [[17/12]], [[24/17]]
| [[17/12]], [[24/17]]
| {{UDnote|step=29}}
| {{UDnote|step=29}}
|-
|-
| 30
| 30
| 620.69
| 620.7
| [[10/7]]
| [[10/7]]
| {{UDnote|step=30}}
| {{UDnote|step=30}}
|-
|-
| 31
| 31
| 641.38
| 641.4
| [[13/9]], [[16/11]]
| [[13/9]], [[16/11]]
| {{UDnote|step=31}}
| {{UDnote|step=31}}
|-
|-
| 32
| 32
| 662.07
| 662.1
| [[22/15]]
| [[22/15]]
| {{UDnote|step=32}}
| {{UDnote|step=32}}
|-
|-
| 33
| 33
| 682.76
| 682.8
| [[40/27]]
| [[40/27]]
| {{UDnote|step=33}}
| {{UDnote|step=33}}
|-
|-
| 34
| 34
| 703.45
| 703.4
| [[3/2]]
| [[3/2]]
| {{UDnote|step=34}}
| {{UDnote|step=34}}
|-
|-
| 35
| 35
| 724.14
| 724.1
| [[32/21]]
| [[32/21]]
| {{UDnote|step=35}}
| {{UDnote|step=35}}
|-
|-
| 36
| 36
| 744.83
| 744.8
| [[20/13]], [[26/17]], [[17/11]]
| [[17/11]], [[20/13]], [[26/17]]
| {{UDnote|step=36}}
| {{UDnote|step=36}}
|-
|-
| 37
| 37
| 765.52
| 765.5
| [[14/9]]
| [[14/9]]
| {{UDnote|step=37}}
| {{UDnote|step=37}}
|-
|-
| 38
| 38
| 786.21
| 786.2
| [[11/7]]
| [[11/7]]
| {{UDnote|step=38}}
| {{UDnote|step=38}}
|-
|-
| 39
| 39
| 806.90
| 806.9
| [[8/5]]
| [[8/5]]
| {{UDnote|step=39}}
| {{UDnote|step=39}}
|-
|-
| 40
| 40
| 827.59
| 827.6
| [[34/21]]
| [[21/13]], [[34/21]]
| {{UDnote|step=40}}
| {{UDnote|step=40}}
|-
|-
| 41
| 41
| 848.28
| 848.3
| [[13/8]], [[18/11]]
| [[13/8]], [[18/11]]
| {{UDnote|step=41}}
| {{UDnote|step=41}}
|-
|-
| 42
| 42
| 868.97
| 869.0
| [[28/17]]
| [[28/17]], [[33/20]]
| {{UDnote|step=42}}
| {{UDnote|step=42}}
|-
|-
| 43
| 43
| 889.66
| 889.7
| [[5/3]]
| [[5/3]]
| {{UDnote|step=43}}
| {{UDnote|step=43}}
|-
|-
| 44
| 44
| 910.34
| 910.3
| [[22/13]], [[17/10]]
| [[17/10]], [[22/13]]
| {{UDnote|step=44}}
| {{UDnote|step=44}}
|-
|-
| 45
| 45
| 931.03
| 931.0
| [[12/7]]
| [[12/7]]
| {{UDnote|step=45}}
| {{UDnote|step=45}}
|-
|-
| 46
| 46
| 951.72
| 951.7
| [[26/15]]
| [[26/15]]
| {{UDnote|step=46}}
| {{UDnote|step=46}}
|-
|-
| 47
| 47
| 972.41
| 972.4
| [[7/4]]
| [[7/4]]
| {{UDnote|step=47}}
| {{UDnote|step=47}}
|-
|-
| 48
| 48
| 993.10
| 993.1
| [[16/9]], [[30/17]]
| [[16/9]], [[30/17]]
| {{UDnote|step=48}}
| {{UDnote|step=48}}
|-
|-
| 49
| 49
| 1013.79
| 1013.8
| [[9/5]]
| [[9/5]]
| {{UDnote|step=49}}
| {{UDnote|step=49}}
|-
|-
| 50
| 50
| 1034.48
| 1034.5
| [[20/11]]
| [[20/11]]
| {{UDnote|step=50}}
| {{UDnote|step=50}}
|-
|-
| 51
| 51
| 1055.17
| 1055.2
| [[11/6]], [[24/13]]
| [[11/6]], [[24/13]]
| {{UDnote|step=51}}
| {{UDnote|step=51}}
|-
|-
| 52
| 52
| 1075.86
| 1075.9
| [[13/7]], [[28/15]]
| [[13/7]], [[28/15]]
| {{UDnote|step=52}}
| {{UDnote|step=52}}
|-
|-
| 53
| 53
| 1096.55
| 1096.6
| [[15/8]], [[32/17]], [[17/9]]
| [[15/8]], [[17/9]], [[32/17]]
| {{UDnote|step=53}}
| {{UDnote|step=53}}
|-
|-
| 54
| 54
| 1117.24
| 1117.2
| [[48/25]], [[40/21]], [[21/11]]
| [[21/11]], [[40/21]], ''[[48/25]]''
| {{UDnote|step=54}}
| {{UDnote|step=54}}
|-
|-
| 55
| 55
| 1137.93
| 1137.9
| [[25/13]], [[52/27]], [[27/14]], [[64/33]]
| [[25/13]], [[27/14]], [[52/27]], [[64/33]]
| {{UDnote|step=55}}
| {{UDnote|step=55}}
|-
|-
| 56
| 56
| 1158.62
| 1158.6
| [[35/18]], [[96/49]], [[49/25]], [[108/55]]
| [[35/18]], [[39/20]], [[49/25]], [[88/45]], [[96/49]], [[108/55]]
| {{UDnote|step=56}}
| {{UDnote|step=56}}
|-
|-
| 57
| 57
| 1179.31
| 1179.3
| [[55/28]], [[63/32]], [[160/81]], [[125/64]]
| [[55/28]], [[63/32]], [[160/81]], [[180/91]], [[208/105]]
| {{UDnote|step=57}}
| {{UDnote|step=57}}
|-
|-
| 58
| 58
| 1200.00
| 1200.0
| [[2/1]]
| [[2/1]]
| {{UDnote|step=58}}
| {{UDnote|step=58}}
|}
|}
<nowiki/>* As a 17-limit temperament, inconsistently mapped intervals in ''italic''


== Notation ==
== Notation ==
=== Ups and downs notation ===
=== Ups and downs notation ===
In 58edo, a sharp raises by six steps, so a combination of quarter tone accidentals and arrow accidentals from [[Helmholtz–Ellis notation]] can be used to fill in the gaps.
58edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc.
{{Sharpness-sharp6a}}
 
Half-sharps and half-flats can be used to avoid triple arrows:
{{Sharpness-sharp6b}}


Alternatively, a combination of quarter tone accidentals and arrow accidentals from [[Helmholtz–Ellis notation]] can be used.
{{Sharpness-sharp6}}
{{Sharpness-sharp6}}


If double arrows are not desirable, then arrows can be attached to quarter-tone accidentals:
If double arrows are not desirable, then arrows can be attached to quarter-tone accidentals:
{{Sharpness-sharp6-qt}}
=== Ivan Wyschnegradsky's notation ===
Since a sharp raises by six steps, Wyschnegradsky accidentals borrowed from [[72edo]] can also be used:
{{Sharpness-sharp6-iw}}


{{Sharpness-sharp6-qt}}
=== Sagittal notation ===
==== Evo flavor ====
<imagemap>
File:58-EDO_Evo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 662 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[81/80]]
rect 120 80 230 106 [[55/54]]
rect 230 80 350 106 [[33/32]]
default [[File:58-EDO_Evo_Sagittal.svg]]
</imagemap>


=== Sagittal ===
==== Revo flavor ====
The following table shows [[sagittal notation]] accidentals in one apotome for 58edo.  
<imagemap>
File:58-EDO_Revo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 662 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[81/80]]
rect 120 80 230 106 [[55/54]]
rect 230 80 350 106 [[33/32]]
default [[File:58-EDO_Revo_Sagittal.svg]]
</imagemap>


{| class="wikitable center-all"
==== Evo-SZ flavor ====
|-
<imagemap>
! Step Offset
File:58-EDO_Evo-SZ_Sagittal.svg
| 0
desc none
| 1
rect 80 0 300 50 [[Sagittal_notation]]
| 2
rect 300 0 583 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
| 3
rect 20 80 120 106 [[81/80]]
| 4
rect 120 80 230 106 [[55/54]]
| 5
rect 230 80 350 106 [[33/32]]
| 6
default [[File:58-EDO_Evo-SZ_Sagittal.svg]]
|-
</imagemap>
! Symbol
| [[File:Sagittal natural.png]]
| [[File:Sagittal pai.png]]
| [[File:Sagittal kai.png]]
| [[File:Sagittal pakai.png]]
| [[File:Sagittal sharp kao.png]]
| [[File:Sagittal sharp pao.png]]
| [[File:Sagittal sharp.png]]
|}


=== Hemipyth notation ===
=== Hemipyth notation ===
Line 478: Line 501:


== Regular temperament properties ==
== Regular temperament properties ==
{{comma basis begin}}
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
|-
| 2.3.5
| 2.3.5
| 2048/2025, [[Unicorn comma|1594323/1562500]]
| 2048/2025, [[1594323/1562500]]
| {{mapping| 58 92 135 }}
| {{Mapping| 58 92 135 }}
| &minus;1.29
| −1.29
| 1.22
| 1.22
| 5.89
| 5.89
Line 489: Line 521:
| 2.3.5.7
| 2.3.5.7
| 126/125, 1728/1715, 2048/2025
| 126/125, 1728/1715, 2048/2025
| {{mapping| 58 92 135 163 }}
| {{Mapping| 58 92 135 163 }}
| &minus;1.29
| −1.29
| 1.05
| 1.05
| 5.10
| 5.10
Line 496: Line 528:
| 2.3.5.7.11
| 2.3.5.7.11
| 126/125, 176/175, 243/242, 896/891
| 126/125, 176/175, 243/242, 896/891
| {{mapping| 58 92 135 163 201 }}
| {{Mapping| 58 92 135 163 201 }}
| &minus;1.45
| −1.45
| 1.00
| 1.00
| 4.83
| 4.83
Line 503: Line 535:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 126/125, 144/143, 176/175, 196/195, 364/363
| 126/125, 144/143, 176/175, 196/195, 364/363
| {{mapping| 58 92 135 163 201 215 }}
| {{Mapping| 58 92 135 163 201 215 }}
| &minus;1.56
| −1.56
| 0.94
| 0.94
| 4.56
| 4.56
Line 510: Line 542:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 126/125, 136/135, 144/143, 176/175, 196/195, 364/363
| 126/125, 136/135, 144/143, 176/175, 196/195, 364/363
| {{mapping| 58 92 135 163 201 215 237 }}
| {{Mapping| 58 92 135 163 201 215 237 }}
| &minus;1.28
| −1.28
| 1.10
| 1.10
| 5.33
| 5.33
{{comma basis end}}
|}
* 58et has a lower relative error than any previous equal temperaments in the 13-limit, and the next equal temperament that does better in this subgroup is [[72edo|72]].  
* 58et has a lower relative error than any previous equal temperaments in the 13-limit, and the next equal temperament that does better in this subgroup is [[72edo|72]].  


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{{rank-2 begin}}
{| class="wikitable center-all left-5"
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
! Periods<br>per 8ve
! Generator*
! Cents*
! Associated<br>ratio*
! Temperament
|-
|-
| 1
| 1
| 3\58
| 3\58
| 62.07
| 62.1
| 28/27
| 28/27
| [[Unicorn]] / alicorn / qilin
| [[Unicorn]] / alicorn / qilin
Line 528: Line 567:
| 1
| 1
| 11\58
| 11\58
| 227.59
| 227.6
| 8/7
| 8/7
| [[Gorgik]]
| [[Gorgik]]
Line 534: Line 573:
| 1
| 1
| 13\58
| 13\58
| 268.97
| 269.0
| 7/6
| 7/6
| [[Infraorwell]]
| [[Infraorwell]]
Line 540: Line 579:
| 1
| 1
| 15\58
| 15\58
| 310.34
| 310.3
| 6/5
| 6/5
| [[Myna]]
| [[Myna]]
Line 546: Line 585:
| 1
| 1
| 17\58
| 17\58
| 351.72
| 351.7
| 49/40
| 49/40
| [[Hemififths]]
| [[Hemififths]]
Line 552: Line 591:
| 1
| 1
| 19\58
| 19\58
| 393.10
| 393.1
| 64/51
| 64/51
| [[Emmthird]]
| [[Emmthird]]
Line 558: Line 597:
| 1
| 1
| 23\58
| 23\58
| 475.86
| 475.9
| 21/16
| 21/16
| [[Buzzard]] / [[subfourth]]
| [[Buzzard]] / [[subfourth]]
Line 564: Line 603:
| 1
| 1
| 27\58
| 27\58
| 558.62
| 558.6
| 11/8
| 11/8
| [[Thuja]]
| [[Thuja]]
Line 570: Line 609:
| 2
| 2
| 3\58
| 3\58
| 62.07
| 62.1
| 28/27
| 28/27
| [[Monocerus]]
| [[Monocerus]]
Line 576: Line 615:
| 2
| 2
| 1\58
| 1\58
| 20.69
| 20.7
| 81/80
| 81/80
| [[Commatic]]
| [[Bicommatic]]
|-
|-
| 2
| 2
| 9\58
| 9\58
| 186.21
| 186.2
| 10/9
| 10/9
| [[Secant]]
| [[Secant]]
|-
|-
| 2
| 2
| 17\58<br />(12\58)
| 17\58<br>(12\58)
| 351.72<br />(248.28)
| 351.7<br>(248.3)
| 11/9<br />(15/13)
| 11/9<br>(15/13)
| [[Sruti]]
| [[Sruti]]
|-
|-
| 2
| 2
| 21\58<br />(8\58)
| 21\58<br>(8\58)
| 434.48<br />(165.52)
| 434.5<br>(165.5)
| 9/7<br />(11/10)
| 9/7<br>(11/10)
| [[Echidna]]
| [[Echidna]]
|-
|-
| 2
| 2
| 24\58<br />(5\58)
| 24\58<br>(5\58)
| 496.55<br />(103.45)
| 496.6<br>(103.4)
| 4/3<br />(17/16)
| 4/3<br>(17/16)
| [[Diaschismic]]
| [[Diaschismic]]
|-
|-
| 2
| 2
| 25\58<br />(4\58)
| 25\58<br>(4\58)
| 517.24<br />(82.76)
| 517.2<br>(82.8)
| 27/20<br />(21/20)
| 27/20<br>(21/20)
| [[Harry]]
| [[Harry]]
|-
|-
| 29
| 29
| 19\58<br />(1\58)
| 19\58<br>(1\58)
| 393.10<br />(20.69)
| 393.1<br>(20.7)
| 5/4<br />(91/90)
| 5/4<br>(91/90)
| [[Mystery]]
| [[Mystery]]
{{rank-2 end}}
|}
{{orf}}
<nowiki/>* [[Normal forms|Octave-reduced form]], reduced to the first half-octave, and [[normal forms|minimal form]] in parentheses if distinct


58et can also be detempered to [[semihemi]] (58 & 140), [[supers]] (58 & 152), [[condor]] (58 & 159), and [[eagle]] (58 & 212).
58et can also be detempered to [[semihemi]] ({{nowrap| 58 & 140 }}), [[supers]] ({{nowrap| 58 & 152 }}), [[condor]] ({{nowrap| 58 & 159 }}), and [[eagle]] ({{nowrap| 58 & 212 }}).
 
== Octave stretch or compression ==
58edo's approximations of harmonics 3, 5, 7, 11, and 13 can all be improved if slightly [[stretched and compressed tuning|compressing the octave]] is acceptable, using tunings such as [[92edt]] or [[150ed6]].
 
What follows is a comparison of stretched- and compressed-octave 58edo tunings.
 
; [[zpi|288zpi]]
* Step size: 20.736{{c}}, octave size: 1202.69{{c}}
Stretching the octave of 58edo by around 2.5{{c}} results in improved primes 11, 13, 19 and 23, but worse primes 2, 3, 5, 7 and 17. This approximates all harmonics up to 16 within 9.98{{c}}. The tuning 288zpi does this.
{{Harmonics in cet|20.736|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 288zpi}}
{{Harmonics in cet|20.736|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 288zpi (continued)}}
 
; 58edo
* Step size: 20.690{{c}}, octave size: 1200.00{{c}}
Pure-octaves 58edo approximates all harmonics up to 16 within 8.28{{c}}.
{{Harmonics in equal|58|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58edo}}
{{Harmonics in equal|58|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58edo (continued)}}
 
; [[150ed6]]
* Step size: 20.680{{c}}, octave size: 1199.42{{c}}
Compressing the octave of 58edo by around half a cent results in improved primes 3, 5, 7, 11 and 13 but a worse prime 2. This approximates all harmonics up to 16 within 6.02{{c}}. The tuning 150ed6 does this.
{{Harmonics in equal|150|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 150ed6}}
{{Harmonics in equal|150|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 150ed6 (continued)}}
 
; [[92edt]]
* Step size: 20.673{{c}}, octave size: 1199.06{{c}}
Compressing the octave of 58edo by around 1{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 4.60{{c}}. The tuning 92edt does this.
{{Harmonics in equal|92|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 92edt}}
{{Harmonics in equal|92|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 92edt (continued)}}
 
; [[zpi|289zpi]] / [[WE|58et, 7-limit WE tuning]]
* Step size: 20.666{{c}}, octave size: 1198.63{{c}}
Compressing the octave of 58edo by just under 1.5{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 5.49{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. The tuning 289zpi also does this, its octave differing from 7-limit WE by only 0.06{{c}}.
{{Harmonics in cet|20.666|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 289zpi}}
{{Harmonics in cet|20.666|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 289zpi (continued)}}
 
; [[WE|58et, 13-limit WE tuning]]
* Step size: 20.663{{c}}, octave size: 1198.45{{c}}
Compressing the octave of 58edo by just over 1.5{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 6.18{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in cet|20.663|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning}}
{{Harmonics in cet|20.663|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning (continued)}}
 
; [[34edf]]
* Step size: 20.646{{c}}, octave size: 1197.45{{c}}
Compressing the octave of 58edo by around 2.5{{c}} results in much improved primes 5, 11 and 13, but worse primes 2 and 3. This approximates all harmonics up to 16 within 10.19{{c}}. The tuning 34edf does this.
{{Harmonics in equal|34|3|2|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 34edf}}
{{Harmonics in equal|34|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 34edf (continued)}}


== Scales ==
== Scales ==
* [[Compdye]]
* [[Hemif7]]
* [[Hemif7]]
* [[Hemif10]]
* [[Hemif10]]
Line 633: Line 720:
== Music ==
== Music ==
; [[Jeff Brown]]
; [[Jeff Brown]]
* [https://www.youtube.com/watch?v=0373hBH87LY ''Fruitbats in Formation'']
* [https://www.youtube.com/watch?v=0373hBH87LY ''Fruitbats in Formation''] (2023)
 
; [[Bryan Deister]]
* [https://www.youtube.com/shorts/4J4MNno-4PA ''58edo improv''] (2025)
* [https://www.youtube.com/shorts/7gkRyld5OU8 ''Waltz in 58edo''] (2025)
 
; [[Francium]]
* [https://www.youtube.com/watch?v=XXMjoUxVfLs ''We Wish You A Larry Christmas''] (2024) – in larry, 58edo tuning
 
; [[Cam Taylor]]
; [[Cam Taylor]]
* [https://youtu.be/Keclakcqie8 58EDO, Mystery temperament and 2 rings of Pythagorean on the Lumatone]
* [https://www.youtube.com/watch?v=Keclakcqie8 ''58EDO, Mystery temperament and 2 rings of Pythagorean on the Lumatone''] (2021)


[[Category:Buzzard]]
[[Category:Buzzard]]
[[Category:Diaschismic]]
[[Category:Diaschismic]]
[[Category:Harry]]
[[Category:Harry]]
[[Category:Harry Partch]]
[[Category:Hemififths]]
[[Category:Hemififths]]
[[Category:Listen]]
[[Category:Myna]]
[[Category:Myna]]
[[Category:Mystery]]
[[Category:Mystery]]
[[Category:Harry Partch]]
[[Category:Listen]]