58edo: Difference between revisions

ArrowHead294 (talk | contribs)
BudjarnLambeth (talk | contribs)
 
(37 intermediate revisions by 10 users not shown)
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
{{Wikipedia|58 equal temperament}}
{{Wikipedia|58 equal temperament}}
{{EDO intro|58}}
{{ED intro}}


== Theory ==
== Theory ==
58edo is a strong system in the [[11-limit|11]]-, [[13-limit|13]]- and [[17-limit]]. It is the smallest [[edo]] which is [[consistent]] through the [[17-odd-limit]], and is also the smallest distinctly consistent in the [[11-odd-limit]] (the first equal temperament to map the entire 11-odd-limit [[tonality diamond]] to distinct scale steps), and hence the first which can define a tempered version of the famous 43-note [[Harry Partch related scales|Genesis scale]] of [[Harry Partch]].  
58edo is a strong system in the [[11-limit|11-]], [[13-limit|13-]] and [[17-limit]]. It is the smallest [[edo]] which is [[consistent]] through the [[17-odd-limit]], and is also the smallest distinctly consistent in the [[11-odd-limit]] (the first equal temperament to map the entire 11-odd-limit [[tonality diamond]] to distinct scale steps), and hence the first which can define a tempered version of the famous 43-note [[Harry Partch related scales|Genesis scale]] of [[Harry Partch]].  


58et tempers out [[2048/2025]], [[126/125]], [[1728/1715]], [[144/143]], [[176/175]], [[896/891]], [[243/242]], [[5120/5103]], [[351/350]], [[364/363]], [[441/440]], and [[540/539]]. It [[support]]s [[hemififths]], [[myna]], [[diaschismic]], [[harry]], [[mystery]], [[buzzard]], [[thuja]] [[Regular temperament|temperament]]s plus a number of [[gravity family]] extensions, and supplies the [[optimal patent val]] for the 7-, 11- and 13-limit diaschismic, 11- and 13-limit hemififths, 11- and 13-limit thuja, and 13-limit myna. It also supplies the optimal patent val for the 13-limit rank-3 temperaments [[thrush]], [[bluebird]], [[aplonis]] and [[jofur]].
While the [[17/1|17th harmonic]] is a cent and a half flat, the harmonics below it are all a little sharp, giving it the sound of a sharp system. Since {{nowrap|58 {{=}} 2 × 29}}, 58edo shares the same excellent perfect fifth with [[29edo]]. It is the last edo to have exactly one [[5L 2s|diatonic]] perfect fifth and no [[5edo]] or [[7edo]] fifths.  


While the 17th harmonic is a cent and a half flat, the harmonics below it are all a little sharp, giving it the sound of a sharp system.  
As an equal temperament, 58et [[tempering out|tempers out]] [[2048/2025]] in the [[5-limit]]; [[126/125]], [[1728/1715]], and [[5120/5103]] in the [[7-limit]]; [[176/175]], [[243/242]], [[441/440]], [[540/539]], and [[896/891]] in the 11-limit; [[144/143]], [[351/350]], [[364/363]] in the 13-limit. It [[support]]s [[hemififths]], [[myna]], [[diaschismic]], [[harry]], [[mystery]], [[buzzard]], [[thuja]] [[regular temperament|temperament]]s plus a number of [[gravity family]] [[extension]]s, and supplies the [[optimal patent val]] for the 7-, 11- and 13-limit diaschismic, 11- and 13-limit hemififths, 11- and 13-limit thuja, and 13-limit myna. It also supplies the optimal patent val for the 13-limit rank-3 temperaments [[thrush]], [[bluebird]], [[aplonis]] and [[jofur]].


Of all edos which map the syntonic comma ([[81/80]]) to 1 step by patent val, 58edo is the one with the step size closest to 81/80, with one step of 58edo being less than 1{{cent}} narrower than the just interval.
Of all edos which map the syntonic comma ([[81/80]]) to 1 step by patent val, 58edo is the one with the step size closest to 81/80, with one step of 58edo being less than 1{{cent}} narrower than the just interval.
Line 16: Line 16:


=== Subsets and supersets ===
=== Subsets and supersets ===
58 = 2 × 29, and 58edo shares the same excellent fifth with [[29edo]].
58edo contains [[2edo]] and [[29edo]] as subsets.


== Intervals ==
== Intervals ==
Line 23: Line 23:
! #
! #
! Cents
! Cents
! Approximate Ratios
! Approximate ratios*
! [[Ups and downs notation]]
! [[Ups and downs notation]]
|-
|-
| 0
| 0
| 0.00
| 0.0
| [[1/1]]
| [[1/1]]
| {{UDnote|step=0}}
| {{UDnote|step=0}}
|-
|-
| 1
| 1
| 20.69
| 20.7
| [[56/55]], [[64/63]], [[81/80]], [[128/125]]
| [[56/55]], [[64/63]], [[81/80]], [[91/90]], [[105/104]]
| {{UDnote|step=1}}
| {{UDnote|step=1}}
|-
|-
| 2
| 2
| 41.38
| 41.4
| [[36/35]], [[49/48]], [[50/49]], [[55/54]]
| [[36/35]], [[40/39]], [[45/44]], [[49/48]], [[50/49]], [[55/54]]
| {{UDnote|step=2}}
| {{UDnote|step=2}}
|-
|-
| 3
| 3
| 62.07
| 62.1
| [[26/25]], [[27/26]], [[28/27]], [[33/32]]
| [[26/25]], [[27/26]], [[28/27]], [[33/32]]
| {{UDnote|step=3}}
| {{UDnote|step=3}}
|-
|-
| 4
| 4
| 82.76
| 82.8
| [[25/24]], [[21/20]], [[22/21]]
| [[21/20]], [[22/21]], ''[[25/24]]''
| {{UDnote|step=4}}
| {{UDnote|step=4}}
|-
|-
| 5
| 5
| 103.45
| 103.4
| [[16/15]], [[17/16]], [[18/17]]
| [[16/15]], [[17/16]], [[18/17]]
| {{UDnote|step=5}}
| {{UDnote|step=5}}
|-
|-
| 6
| 6
| 124.14
| 124.1
| [[14/13]], [[15/14]], [[27/25]]
| [[14/13]], [[15/14]]
| {{UDnote|step=6}}
| {{UDnote|step=6}}
|-
|-
| 7
| 7
| 144.83
| 144.8
| [[12/11]], [[13/12]]
| [[12/11]], [[13/12]]
| {{UDnote|step=7}}
| {{UDnote|step=7}}
|-
|-
| 8
| 8
| 165.52
| 165.5
| [[11/10]]
| [[11/10]]
| {{UDnote|step=8}}
| {{UDnote|step=8}}
|-
|-
| 9
| 9
| 186.21
| 186.2
| [[10/9]]
| [[10/9]]
| {{UDnote|step=9}}
| {{UDnote|step=9}}
|-
|-
| 10
| 10
| 206.90
| 206.9
| [[9/8]], [[17/15]]
| [[9/8]], [[17/15]]
| {{UDnote|step=10}}
| {{UDnote|step=10}}
|-
|-
| 11
| 11
| 227.59
| 227.6
| [[8/7]]
| [[8/7]]
| {{UDnote|step=11}}
| {{UDnote|step=11}}
|-
|-
| 12
| 12
| 248.28
| 248.3
| [[15/13]]
| [[15/13]]
| {{UDnote|step=12}}
| {{UDnote|step=12}}
|-
|-
| 13
| 13
| 268.97
| 269.0
| [[7/6]]
| [[7/6]]
| {{UDnote|step=13}}
| {{UDnote|step=13}}
|-
|-
| 14
| 14
| 289.66
| 289.7
| [[13/11]], [[20/17]]
| [[13/11]], [[20/17]]
| {{UDnote|step=14}}
| {{UDnote|step=14}}
|-
|-
| 15
| 15
| 310.34
| 310.3
| [[6/5]]
| [[6/5]]
| {{UDnote|step=15}}
| {{UDnote|step=15}}
|-
|-
| 16
| 16
| 331.03
| 331.0
| [[17/14]]
| [[17/14]], [[40/33]]
| {{UDnote|step=16}}
| {{UDnote|step=16}}
|-
|-
| 17
| 17
| 351.72
| 351.7
| [[11/9]], [[16/13]]
| [[11/9]], [[16/13]]
| {{UDnote|step=17}}
| {{UDnote|step=17}}
|-
|-
| 18
| 18
| 372.41
| 372.4
| [[21/17]]
| [[21/17]], [[26/21]]
| {{UDnote|step=18}}
| {{UDnote|step=18}}
|-
|-
| 19
| 19
| 393.10
| 393.1
| [[5/4]]
| [[5/4]]
| {{UDnote|step=19}}
| {{UDnote|step=19}}
|-
|-
| 20
| 20
| 413.79
| 413.8
| [[14/11]]
| [[14/11]]
| {{UDnote|step=20}}
| {{UDnote|step=20}}
|-
|-
| 21
| 21
| 434.48
| 434.5
| [[9/7]]
| [[9/7]]
| {{UDnote|step=21}}
| {{UDnote|step=21}}
|-
|-
| 22
| 22
| 455.17
| 455.2
| [[13/10]], [[17/13]], [[22/17]]
| [[13/10]], [[17/13]], [[22/17]]
| {{UDnote|step=22}}
| {{UDnote|step=22}}
|-
|-
| 23
| 23
| 475.86
| 475.9
| [[21/16]]
| [[21/16]]
| {{UDnote|step=23}}
| {{UDnote|step=23}}
|-
|-
| 24
| 24
| 496.55
| 496.6
| [[4/3]]
| [[4/3]]
| {{UDnote|step=24}}
| {{UDnote|step=24}}
|-
|-
| 25
| 25
| 517.24
| 517.2
| [[27/20]]
| [[27/20]]
| {{UDnote|step=25}}
| {{UDnote|step=25}}
|-
|-
| 26
| 26
| 537.93
| 537.9
| [[15/11]]
| [[15/11]]
| {{UDnote|step=26}}
| {{UDnote|step=26}}
|-
|-
| 27
| 27
| 558.62
| 558.6
| [[11/8]], [[18/13]]
| [[11/8]], [[18/13]]
| {{UDnote|step=27}}
| {{UDnote|step=27}}
|-
|-
| 28
| 28
| 579.31
| 579.3
| [[7/5]]
| [[7/5]]
| {{UDnote|step=28}}
| {{UDnote|step=28}}
|-
|-
| 29
| 29
| 600.00
| 600.0
| [[17/12]], [[24/17]]
| [[17/12]], [[24/17]]
| {{UDnote|step=29}}
| {{UDnote|step=29}}
|-
|-
| 30
| 30
| 620.69
| 620.7
| [[10/7]]
| [[10/7]]
| {{UDnote|step=30}}
| {{UDnote|step=30}}
|-
|-
| 31
| 31
| 641.38
| 641.4
| [[13/9]], [[16/11]]
| [[13/9]], [[16/11]]
| {{UDnote|step=31}}
| {{UDnote|step=31}}
|-
|-
| 32
| 32
| 662.07
| 662.1
| [[22/15]]
| [[22/15]]
| {{UDnote|step=32}}
| {{UDnote|step=32}}
|-
|-
| 33
| 33
| 682.76
| 682.8
| [[40/27]]
| [[40/27]]
| {{UDnote|step=33}}
| {{UDnote|step=33}}
|-
|-
| 34
| 34
| 703.45
| 703.4
| [[3/2]]
| [[3/2]]
| {{UDnote|step=34}}
| {{UDnote|step=34}}
|-
|-
| 35
| 35
| 724.14
| 724.1
| [[32/21]]
| [[32/21]]
| {{UDnote|step=35}}
| {{UDnote|step=35}}
|-
|-
| 36
| 36
| 744.83
| 744.8
| [[20/13]], [[26/17]], [[17/11]]
| [[17/11]], [[20/13]], [[26/17]]
| {{UDnote|step=36}}
| {{UDnote|step=36}}
|-
|-
| 37
| 37
| 765.52
| 765.5
| [[14/9]]
| [[14/9]]
| {{UDnote|step=37}}
| {{UDnote|step=37}}
|-
|-
| 38
| 38
| 786.21
| 786.2
| [[11/7]]
| [[11/7]]
| {{UDnote|step=38}}
| {{UDnote|step=38}}
|-
|-
| 39
| 39
| 806.90
| 806.9
| [[8/5]]
| [[8/5]]
| {{UDnote|step=39}}
| {{UDnote|step=39}}
|-
|-
| 40
| 40
| 827.59
| 827.6
| [[34/21]]
| [[21/13]], [[34/21]]
| {{UDnote|step=40}}
| {{UDnote|step=40}}
|-
|-
| 41
| 41
| 848.28
| 848.3
| [[13/8]], [[18/11]]
| [[13/8]], [[18/11]]
| {{UDnote|step=41}}
| {{UDnote|step=41}}
|-
|-
| 42
| 42
| 868.97
| 869.0
| [[28/17]]
| [[28/17]], [[33/20]]
| {{UDnote|step=42}}
| {{UDnote|step=42}}
|-
|-
| 43
| 43
| 889.66
| 889.7
| [[5/3]]
| [[5/3]]
| {{UDnote|step=43}}
| {{UDnote|step=43}}
|-
|-
| 44
| 44
| 910.34
| 910.3
| [[22/13]], [[17/10]]
| [[17/10]], [[22/13]]
| {{UDnote|step=44}}
| {{UDnote|step=44}}
|-
|-
| 45
| 45
| 931.03
| 931.0
| [[12/7]]
| [[12/7]]
| {{UDnote|step=45}}
| {{UDnote|step=45}}
|-
|-
| 46
| 46
| 951.72
| 951.7
| [[26/15]]
| [[26/15]]
| {{UDnote|step=46}}
| {{UDnote|step=46}}
|-
|-
| 47
| 47
| 972.41
| 972.4
| [[7/4]]
| [[7/4]]
| {{UDnote|step=47}}
| {{UDnote|step=47}}
|-
|-
| 48
| 48
| 993.10
| 993.1
| [[16/9]], [[30/17]]
| [[16/9]], [[30/17]]
| {{UDnote|step=48}}
| {{UDnote|step=48}}
|-
|-
| 49
| 49
| 1013.79
| 1013.8
| [[9/5]]
| [[9/5]]
| {{UDnote|step=49}}
| {{UDnote|step=49}}
|-
|-
| 50
| 50
| 1034.48
| 1034.5
| [[20/11]]
| [[20/11]]
| {{UDnote|step=50}}
| {{UDnote|step=50}}
|-
|-
| 51
| 51
| 1055.17
| 1055.2
| [[11/6]], [[24/13]]
| [[11/6]], [[24/13]]
| {{UDnote|step=51}}
| {{UDnote|step=51}}
|-
|-
| 52
| 52
| 1075.86
| 1075.9
| [[13/7]], [[28/15]]
| [[13/7]], [[28/15]]
| {{UDnote|step=52}}
| {{UDnote|step=52}}
|-
|-
| 53
| 53
| 1096.55
| 1096.6
| [[15/8]], [[32/17]], [[17/9]]
| [[15/8]], [[17/9]], [[32/17]]
| {{UDnote|step=53}}
| {{UDnote|step=53}}
|-
|-
| 54
| 54
| 1117.24
| 1117.2
| [[48/25]], [[40/21]], [[21/11]]
| [[21/11]], [[40/21]], ''[[48/25]]''
| {{UDnote|step=54}}
| {{UDnote|step=54}}
|-
|-
| 55
| 55
| 1137.93
| 1137.9
| [[25/13]], [[52/27]], [[27/14]], [[64/33]]
| [[25/13]], [[27/14]], [[52/27]], [[64/33]]
| {{UDnote|step=55}}
| {{UDnote|step=55}}
|-
|-
| 56
| 56
| 1158.62
| 1158.6
| [[35/18]], [[96/49]], [[49/25]], [[108/55]]
| [[35/18]], [[39/20]], [[49/25]], [[88/45]], [[96/49]], [[108/55]]
| {{UDnote|step=56}}
| {{UDnote|step=56}}
|-
|-
| 57
| 57
| 1179.31
| 1179.3
| [[55/28]], [[63/32]], [[160/81]], [[125/64]]
| [[55/28]], [[63/32]], [[160/81]], [[180/91]], [[208/105]]
| {{UDnote|step=57}}
| {{UDnote|step=57}}
|-
|-
| 58
| 58
| 1200.00
| 1200.0
| [[2/1]]
| [[2/1]]
| {{UDnote|step=58}}
| {{UDnote|step=58}}
|}
|}
<nowiki/>* As a 17-limit temperament, inconsistently mapped intervals in ''italic''


== Notation ==
== Notation ==
=== Sagittal ===
=== Ups and downs notation ===
The following table shows [[sagittal notation]] accidentals in one apotome for 58edo.  
58edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc.
{{Sharpness-sharp6a}}
 
Half-sharps and half-flats can be used to avoid triple arrows:
{{Sharpness-sharp6b}}
 
Alternatively, a combination of quarter tone accidentals and arrow accidentals from [[Helmholtz–Ellis notation]] can be used.
{{Sharpness-sharp6}}
 
If double arrows are not desirable, then arrows can be attached to quarter-tone accidentals:
{{Sharpness-sharp6-qt}}
 
=== Ivan Wyschnegradsky's notation ===
Since a sharp raises by six steps, Wyschnegradsky accidentals borrowed from [[72edo]] can also be used:
 
{{Sharpness-sharp6-iw}}
 
=== Sagittal notation ===
==== Evo flavor ====
<imagemap>
File:58-EDO_Evo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 662 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[81/80]]
rect 120 80 230 106 [[55/54]]
rect 230 80 350 106 [[33/32]]
default [[File:58-EDO_Evo_Sagittal.svg]]
</imagemap>


{| class="wikitable center-all"
==== Revo flavor ====
! Steps
<imagemap>
File:58-EDO_Revo_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 662 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[81/80]]
rect 120 80 230 106 [[55/54]]
rect 230 80 350 106 [[33/32]]
default [[File:58-EDO_Revo_Sagittal.svg]]
</imagemap>
 
==== Evo-SZ flavor ====
<imagemap>
File:58-EDO_Evo-SZ_Sagittal.svg
desc none
rect 80 0 300 50 [[Sagittal_notation]]
rect 300 0 583 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation]
rect 20 80 120 106 [[81/80]]
rect 120 80 230 106 [[55/54]]
rect 230 80 350 106 [[33/32]]
default [[File:58-EDO_Evo-SZ_Sagittal.svg]]
</imagemap>
 
=== Hemipyth notation ===
{| class="wikitable center-all right-2 center-3 mw-collapsible mw-collapsed"
|+ style="font-size: 105%; white-space: nowrap;" | Hemipyth notation for 58edo (SW3-style)
|-
! &#35;
! Cents
! Note names<br />on D
|-
| 0
| 0
| 1
| 0.0
| D
|-
| 2
| 2
| 3
| 41.4
| 4
| α𝄳
|-
| 5
| 5
| 6
| 103.4
| α
|-
| 7
| 144.8
| E𝄳
|-
| 10
| 206.9
| E
|-
| 12
| 248.3
| β𝄳
|-
| 14
| 289.7
| F
|-
| 15
| 310.3
| β
|-
| 17
| 351.7
| F‡
|-
| 19
| 393.1
| γ
|-
| 22
| 455.2
| γ‡
|-
| 24
| 496.6
| G
|-
| 27
| 558.6
| G‡
|-
| 29
| 600.0
| δ
|-
| 31
| 641.4
| A𝄳
|-
| 34
| 703.4
| A
|-
| 36
| 744.8
| ε𝄳
|-
| 39
| 806.9
| ε
|-
| 41
| 848.3
| B𝄳
|-
| 43
| 889.7
| ζ
|-
| 44
| 910.3
| B
|-
| 46
| 951.7
| ζ‡
|-
| 48
| 993.1
| C
|-
| 51
| 1055.2
| C‡
|-
| 53
| 1096.6
| η
|-
| 56
| 1158.6
| η‡
|-
|-
! Symbol
| 58
| [[File:Sagittal natural.png]]
| 1200.0
| [[File:Sagittal pai.png]]
| D
| [[File:Sagittal kai.png]]
| [[File:Sagittal pakai.png]]
| [[File:Sagittal sharp kao.png]]
| [[File:Sagittal sharp pao.png]]
| [[File:Sagittal sharp.png]]
|}
|}


=== Ups and downs notation ===
== Approximation to JI ==
58edo can also be notated using [[ups and downs notation]]. In this case, a sharp raises by six steps, so a combination of quarter tone accidentals and arrow accidentals from [[Helmholtz–Ellis notation]] can be used to fill in the gaps.
 
{{Sharpness-sharp6}}
 
If double arrows are not desirable, then arrows can be attached to quarter-tone accidentals:
 
{{Sharpness-sharp6-qt}}
 
== JI approximation ==
=== Interval mappings ===
=== Interval mappings ===
{{15-odd-limit|58}}
{{15-odd-limit|58}}
Line 361: Line 502:
== Regular temperament properties ==
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
{| class="wikitable center-4 center-5 center-6"
|-
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Subgroup]]
! rowspan="2" | [[Comma list|Comma List]]
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve Stretch (¢)
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning Error
! colspan="2" | Tuning error
|-
|-
! [[TE error|Absolute]] (¢)
! [[TE error|Absolute]] (¢)
Line 371: Line 513:
|-
|-
| 2.3.5
| 2.3.5
| 2048/2025, 1594323/1562500
| 2048/2025, [[1594323/1562500]]
| [{{val| 58 92 135 }}]
| {{Mapping| 58 92 135 }}
| &minus;1.29
| −1.29
| 1.22
| 1.22
| 5.89
| 5.89
Line 379: Line 521:
| 2.3.5.7
| 2.3.5.7
| 126/125, 1728/1715, 2048/2025
| 126/125, 1728/1715, 2048/2025
| [{{val| 58 92 135 163 }}]
| {{Mapping| 58 92 135 163 }}
| &minus;1.29
| −1.29
| 1.05
| 1.05
| 5.10
| 5.10
Line 386: Line 528:
| 2.3.5.7.11
| 2.3.5.7.11
| 126/125, 176/175, 243/242, 896/891
| 126/125, 176/175, 243/242, 896/891
| [{{val| 58 92 135 163 201 }}]
| {{Mapping| 58 92 135 163 201 }}
| &minus;1.45
| −1.45
| 1.00
| 1.00
| 4.83
| 4.83
Line 393: Line 535:
| 2.3.5.7.11.13
| 2.3.5.7.11.13
| 126/125, 144/143, 176/175, 196/195, 364/363
| 126/125, 144/143, 176/175, 196/195, 364/363
| [{{val| 58 92 135 163 201 215 }}]
| {{Mapping| 58 92 135 163 201 215 }}
| &minus;1.56
| −1.56
| 0.94
| 0.94
| 4.56
| 4.56
Line 400: Line 542:
| 2.3.5.7.11.13.17
| 2.3.5.7.11.13.17
| 126/125, 136/135, 144/143, 176/175, 196/195, 364/363
| 126/125, 136/135, 144/143, 176/175, 196/195, 364/363
| [{{val| 58 92 135 163 201 215 237 }}]
| {{Mapping| 58 92 135 163 201 215 237 }}
| &minus;1.28
| −1.28
| 1.10
| 1.10
| 5.33
| 5.33
|}
|}
 
* 58et has a lower relative error than any previous equal temperaments in the 13-limit, and the next equal temperament that does better in this subgroup is [[72edo|72]].  
58et has a lower relative error than any previous equal temperaments in the 13-limit, and the next equal temperament that does better in this subgroup is [[72edo|72]].  


=== Rank-2 temperaments ===
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+ Table of rank-2 temperaments by generator
|+ style="font-size: 105%;" | Table of rank-2 temperaments by generator
|-
|-
! Period<br>per 8ve
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator*
! Cents<br>(Reduced)
! Cents*
! Associated Ratio<br>(Reduced)
! Associated<br>ratio*
! Temperament
! Temperament
|-
|-
| 1
| 1
| 3\58
| 3\58
| 62.07
| 62.1
| 28/27
| 28/27
| [[Unicorn]] / alicorn / qilin
| [[Unicorn]] / alicorn / qilin
Line 426: Line 567:
| 1
| 1
| 11\58
| 11\58
| 227.59
| 227.6
| 8/7
| 8/7
| [[Gorgik]]
| [[Gorgik]]
Line 432: Line 573:
| 1
| 1
| 13\58
| 13\58
| 268.97
| 269.0
| 7/6
| 7/6
| [[Infraorwell]]
| [[Infraorwell]]
Line 438: Line 579:
| 1
| 1
| 15\58
| 15\58
| 310.34
| 310.3
| 6/5
| 6/5
| [[Myna]]
| [[Myna]]
Line 444: Line 585:
| 1
| 1
| 17\58
| 17\58
| 351.72
| 351.7
| 49/40
| 49/40
| [[Hemififths]]
| [[Hemififths]]
Line 450: Line 591:
| 1
| 1
| 19\58
| 19\58
| 393.10
| 393.1
| 64/51
| 64/51
| [[Emmthird]]
| [[Emmthird]]
Line 456: Line 597:
| 1
| 1
| 23\58
| 23\58
| 475.86
| 475.9
| 21/16
| 21/16
| [[Buzzard]] / [[subfourth]]
| [[Buzzard]] / [[subfourth]]
Line 462: Line 603:
| 1
| 1
| 27\58
| 27\58
| 558.62
| 558.6
| 11/8
| 11/8
| [[Thuja]]
| [[Thuja]]
Line 468: Line 609:
| 2
| 2
| 3\58
| 3\58
| 62.07
| 62.1
| 28/27
| 28/27
| [[Monocerus]]
| [[Monocerus]]
Line 474: Line 615:
| 2
| 2
| 1\58
| 1\58
| 20.69
| 20.7
| 81/80
| 81/80
| [[Commatic]]
| [[Bicommatic]]
|-
|-
| 2
| 2
| 9\58
| 9\58
| 186.21
| 186.2
| 10/9
| 10/9
| [[Secant]]
| [[Secant]]
Line 486: Line 627:
| 2
| 2
| 17\58<br>(12\58)
| 17\58<br>(12\58)
| 351.72<br>(248.28)
| 351.7<br>(248.3)
| 11/9<br>(15/13)
| 11/9<br>(15/13)
| [[Sruti]]
| [[Sruti]]
Line 492: Line 633:
| 2
| 2
| 21\58<br>(8\58)
| 21\58<br>(8\58)
| 434.48<br>(165.52)
| 434.5<br>(165.5)
| 9/7<br>(11/10)
| 9/7<br>(11/10)
| [[Echidna]]
| [[Echidna]]
Line 498: Line 639:
| 2
| 2
| 24\58<br>(5\58)
| 24\58<br>(5\58)
| 496.55<br>(103.45)
| 496.6<br>(103.4)
| 4/3<br>(17/16)
| 4/3<br>(17/16)
| [[Diaschismic]]
| [[Diaschismic]]
Line 504: Line 645:
| 2
| 2
| 25\58<br>(4\58)
| 25\58<br>(4\58)
| 517.24<br>(82.76)
| 517.2<br>(82.8)
| 27/20<br>(21/20)
| 27/20<br>(21/20)
| [[Harry]]
| [[Harry]]
Line 510: Line 651:
| 29
| 29
| 19\58<br>(1\58)
| 19\58<br>(1\58)
| 393.10<br>(20.69)
| 393.1<br>(20.7)
| 5/4<br>(91/90)
| 5/4<br>(91/90)
| [[Mystery]]
| [[Mystery]]
|}
|}
<nowiki/>* [[Normal forms|Octave-reduced form]], reduced to the first half-octave, and [[normal forms|minimal form]] in parentheses if distinct
58et can also be detempered to [[semihemi]] ({{nowrap| 58 & 140 }}), [[supers]] ({{nowrap| 58 & 152 }}), [[condor]] ({{nowrap| 58 & 159 }}), and [[eagle]] ({{nowrap| 58 & 212 }}).
== Octave stretch or compression ==
58edo's approximations of harmonics 3, 5, 7, 11, and 13 can all be improved if slightly [[stretched and compressed tuning|compressing the octave]] is acceptable, using tunings such as [[92edt]] or [[150ed6]].
What follows is a comparison of stretched- and compressed-octave 58edo tunings.
; [[zpi|288zpi]]
* Step size: 20.736{{c}}, octave size: 1202.69{{c}}
Stretching the octave of 58edo by around 2.5{{c}} results in improved primes 11, 13, 19 and 23, but worse primes 2, 3, 5, 7 and 17. This approximates all harmonics up to 16 within 9.98{{c}}. The tuning 288zpi does this.
{{Harmonics in cet|20.736|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 288zpi}}
{{Harmonics in cet|20.736|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 288zpi (continued)}}
; 58edo
* Step size: 20.690{{c}}, octave size: 1200.00{{c}}
Pure-octaves 58edo approximates all harmonics up to 16 within 8.28{{c}}.
{{Harmonics in equal|58|2|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58edo}}
{{Harmonics in equal|58|2|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58edo (continued)}}


58et can also be detempered to [[semihemi]] (58 & 140), [[supers]] (58 & 152), [[condor]] (58 & 159), and [[eagle]] (58 & 212).
; [[150ed6]]  
* Step size: 20.680{{c}}, octave size: 1199.42{{c}}
Compressing the octave of 58edo by around half a cent results in improved primes 3, 5, 7, 11 and 13 but a worse prime 2. This approximates all harmonics up to 16 within 6.02{{c}}. The tuning 150ed6 does this.
{{Harmonics in equal|150|6|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 150ed6}}
{{Harmonics in equal|150|6|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 150ed6 (continued)}}
 
; [[92edt]]  
* Step size: 20.673{{c}}, octave size: 1199.06{{c}}
Compressing the octave of 58edo by around 1{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 4.60{{c}}. The tuning 92edt does this.
{{Harmonics in equal|92|3|1|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 92edt}}
{{Harmonics in equal|92|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 92edt (continued)}}
 
; [[zpi|289zpi]] / [[WE|58et, 7-limit WE tuning]]
* Step size: 20.666{{c}}, octave size: 1198.63{{c}}
Compressing the octave of 58edo by just under 1.5{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 5.49{{c}}. Its 7-limit WE tuning and 7-limit [[TE]] tuning both do this. The tuning 289zpi also does this, its octave differing from 7-limit WE by only 0.06{{c}}.
{{Harmonics in cet|20.666|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 289zpi}}
{{Harmonics in cet|20.666|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 289zpi (continued)}}
 
; [[WE|58et, 13-limit WE tuning]]
* Step size: 20.663{{c}}, octave size: 1198.45{{c}}
Compressing the octave of 58edo by just over 1.5{{c}} results in improved primes 3, 5, 7, 11 and 13, but a worse prime 2. This approximates all harmonics up to 16 within 6.18{{c}}. Its 13-limit WE tuning and 13-limit [[TE]] tuning both do this.
{{Harmonics in cet|20.663|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning}}
{{Harmonics in cet|20.663|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 58et, 13-limit WE tuning (continued)}}
 
; [[34edf]]
* Step size: 20.646{{c}}, octave size: 1197.45{{c}}
Compressing the octave of 58edo by around 2.5{{c}} results in much improved primes 5, 11 and 13, but worse primes 2 and 3. This approximates all harmonics up to 16 within 10.19{{c}}. The tuning 34edf does this.
{{Harmonics in equal|34|3|2|intervals=integer|columns=11|collapsed=true|title=Approximation of harmonics in 34edf}}
{{Harmonics in equal|34|3|2|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 34edf (continued)}}


== Scales ==
== Scales ==
* [[Compdye]]
* [[Hemif7]]
* [[Hemif7]]
* [[Hemif10]]
* [[Hemif10]]
Line 530: Line 720:
== Music ==
== Music ==
; [[Jeff Brown]]
; [[Jeff Brown]]
* [https://www.youtube.com/watch?v=0373hBH87LY ''Fruitbats in Formation'']
* [https://www.youtube.com/watch?v=0373hBH87LY ''Fruitbats in Formation''] (2023)
 
; [[Bryan Deister]]
* [https://www.youtube.com/shorts/4J4MNno-4PA ''58edo improv''] (2025)
* [https://www.youtube.com/shorts/7gkRyld5OU8 ''Waltz in 58edo''] (2025)
 
; [[Francium]]
* [https://www.youtube.com/watch?v=XXMjoUxVfLs ''We Wish You A Larry Christmas''] (2024) – in larry, 58edo tuning
 
; [[Cam Taylor]]
; [[Cam Taylor]]
* [https://youtu.be/Keclakcqie8 58EDO, Mystery temperament and 2 rings of Pythagorean on the Lumatone]
* [https://www.youtube.com/watch?v=Keclakcqie8 ''58EDO, Mystery temperament and 2 rings of Pythagorean on the Lumatone''] (2021)


[[Category:Buzzard]]
[[Category:Buzzard]]