|
|
(30 intermediate revisions by 6 users not shown) |
Line 1: |
Line 1: |
| A '''zeta peak index''' ('''ZPI''' or '''zpi''') is a [[tuning]] obtained from one of the peaks of the [[The Riemann zeta function and tuning|Riemann zeta function]]. | | A '''zeta peak index''' ('''ZPI''' or '''zpi''') is an [[equal-step tuning]] obtained from one of the peaks of the [[The Riemann zeta function and tuning|Riemann zeta function]]. The peaks provided are for the common value of σ = 0.5. |
|
| |
|
| For instance, the closest zeta peak of 12edo, which has a value of 12.023edo, is the 34th peak of the Riemann zeta function: this tuning is 34zpi. | | For instance, the closest zeta peak of 12edo, which has a value of 12.023edo, is the 34th peak of the Riemann zeta function: this tuning is 34zpi. |
Line 5: |
Line 5: |
| ZPIs are particularly useful when dealing with zeta peak tunings that are not closely associated with an integer [[EDO]]. For example, 22.597edo is 83zpi, 22.807edo is 84zpi, 23.026edo is 85zpi, 23.232edo is 86zpi, and 23.437edo is 87zpi. | | ZPIs are particularly useful when dealing with zeta peak tunings that are not closely associated with an integer [[EDO]]. For example, 22.597edo is 83zpi, 22.807edo is 84zpi, 23.026edo is 85zpi, 23.232edo is 86zpi, and 23.437edo is 87zpi. |
|
| |
|
| ZPIs are a kind of [[equal-step tuning]].
| | == What are zeta peaks? == |
| | The Riemann zeta function is a mathematical function known for its relationship with the Riemann hypothesis, a 200-year old unsolved problem in mathematics. However, it also has a musical interpretation: the zeta function shows how "well" a given [[equal temperament]] approximates the no-limit [[just intonation]] relative to its size. |
|
| |
|
| {|class="wikitable sortable"
| | Zeta is not an objective metric: There are plenty of other metrics besides zeta for how "well" JI is approximated by an equal tuning, which you can find in: [[:Category:Regular temperament tuning|optimised regular temperament tunings]]. |
| !colspan="3"|Tuning
| |
| !colspan="3"|Strength
| |
| !colspan="2"|Closest EDO
| |
| !colspan="2"|Odd-limit
| |
| !colspan="2"|Integer limit
| |
| |-
| |
| !ZPI
| |
| !Steps per octave
| |
| !Cents
| |
| !Height
| |
| !Integral
| |
| !Gap
| |
| !EDO
| |
| !Octave
| |
| !Consistent
| |
| !Distinct
| |
| !Consistent
| |
| !Distinct
| |
| |-
| |
| |[[2zpi]]
| |
| |1.972767114412
| |
| |608.282646
| |
| |2.340551
| |
| |1.103823
| |
| |10.222388
| |
| |[[2edo]]
| |
| |1216.565292
| |
| |3
| |
| |1
| |
| |4
| |
| |3
| |
| |-
| |
| |[[3zpi]]
| |
| |2.548854231382
| |
| |470.799776
| |
| |1.459266
| |
| |0.414716
| |
| |7.471444
| |
| |[[3edo]]
| |
| |1412.399327
| |
| |1
| |
| |1
| |
| |3
| |
| |3
| |
| |-
| |
| |[[4zpi]]
| |
| |3.059761627805
| |
| |392.187414
| |
| |2.847473
| |
| |1.044063
| |
| |11.592757
| |
| |[[3edo]]
| |
| |1176.562242
| |
| |5
| |
| |3
| |
| |6
| |
| |4
| |
| |-
| |
| |[[5zpi]]
| |
| |3.496845919785
| |
| |343.166393
| |
| |0.925523
| |
| |0.167718
| |
| |5.858780
| |
| |[[3edo]]
| |
| |1029.499178
| |
| |1
| |
| |1
| |
| |2
| |
| |2
| |
| |-
| |
| |[[6zpi]]
| |
| |3.904448124107
| |
| |307.341771
| |
| |2.942394
| |
| |0.927921
| |
| |11.574256
| |
| |[[4edo]]
| |
| |1229.367083
| |
| |7
| |
| |1
| |
| |8
| |
| |3
| |
| |-
| |
| |[[7zpi]]
| |
| |4.322093246475
| |
| |277.643246
| |
| |1.812834
| |
| |0.423656
| |
| |8.808621
| |
| |[[4edo]]
| |
| |1110.572985
| |
| |1
| |
| |1
| |
| |3
| |
| |3
| |
| |-
| |
| |[[8zpi]]
| |
| |4.652876066087
| |
| |257.905000
| |
| |1.129621
| |
| |0.195040
| |
| |6.611021
| |
| |[[5edo]]
| |
| |1289.524998
| |
| |1
| |
| |1
| |
| |2
| |
| |2
| |
| |-
| |
| |[[9zpi]]
| |
| |5.034475598603
| |
| |238.356503
| |
| |3.664837
| |
| |1.131648
| |
| |13.386581
| |
| |[[5edo]]
| |
| |1191.782517
| |
| |9
| |
| |3
| |
| |10
| |
| |4
| |
| |-
| |
| |[[10zpi]]
| |
| |5.391231348573
| |
| |222.583659
| |
| |0.713345
| |
| |0.091351
| |
| |5.235220
| |
| |[[5edo]]
| |
| |1112.918295
| |
| |1
| |
| |1
| |
| |2
| |
| |2
| |
| |-
| |
| |[[11zpi]]
| |
| |5.683417253069
| |
| |211.140577
| |
| |2.061177
| |
| |0.454332
| |
| |9.689889
| |
| |[[6edo]]
| |
| |1266.843464
| |
| |1
| |
| |1
| |
| |3
| |
| |3
| |
| |-
| |
| |[[12zpi]]
| |
| |6.034923687967
| |
| |198.842614
| |
| |2.913512
| |
| |0.699239
| |
| |10.852507
| |
| |[[6edo]]
| |
| |1193.055683
| |
| |1
| |
| |1
| |
| |3
| |
| |3
| |
| |-
| |
| |[[13zpi]]
| |
| |6.373110628934
| |
| |188.291098
| |
| |1.816095
| |
| |0.364080
| |
| |9.293895
| |
| |[[6edo]]
| |
| |1129.746590
| |
| |1
| |
| |1
| |
| |3
| |
| |3
| |
| |-
| |
| |[[14zpi]]
| |
| |6.632178173869
| |
| |180.936032 | |
| |0.603289
| |
| |0.064947
| |
| |4.836586
| |
| |[[7edo]]
| |
| |1266.552222
| |
| |3
| |
| |3
| |
| |4
| |
| |4
| |
| |-
| |
| |[[15zpi]]
| |
| |6.956687656588
| |
| |172.495886
| |
| |4.166936
| |
| |1.162332
| |
| |14.234171
| |
| |[[7edo]]
| |
| |1207.471201
| |
| |5
| |
| |3
| |
| |6
| |
| |5
| |
| |-
| |
| |[[16zpi]]
| |
| |7.285924823948
| |
| |164.701123
| |
| |1.134191
| |
| |0.159745
| |
| |6.678867
| |
| |[[7edo]]
| |
| |1152.907860
| |
| |1
| |
| |1
| |
| |2
| |
| |2
| |
| |-
| |
| |[[17zpi]]
| |
| |7.541342085555
| |
| |159.122870
| |
| |1.551068
| |
| |0.268585
| |
| |8.491473
| |
| |[[8edo]]
| |
| |1272.982964
| |
| |1
| |
| |1
| |
| |3
| |
| |3
| |
| |-
| |
| |[[18zpi]]
| |
| |7.819480070537
| |
| |153.462889
| |
| |2.004530
| |
| |0.355575
| |
| |8.808327
| |
| |[[8edo]]
| |
| |1227.703110
| |
| |1
| |
| |1
| |
| |2
| |
| |2
| |
| |-
| |
| |[[19zpi]]
| |
| |8.137425327401
| |
| |147.466791
| |
| |3.641859
| |
| |0.881068
| |
| |12.934091
| |
| |[[8edo]]
| |
| |1179.734328
| |
| |3
| |
| |3
| |
| |7
| |
| |4
| |
| |-
| |
| |[[20zpi]]
| |
| |8.427502201950
| |
| |142.390945
| |
| |0.632316
| |
| |0.065792
| |
| |5.190978
| |
| |[[8edo]]
| |
| |1139.127558
| |
| |3
| |
| |3
| |
| |4
| |
| |4
| |
| |-
| |
| |[[21zpi]]
| |
| |8.644750943874
| |
| |138.812559
| |
| |1.368228
| |
| |0.209799
| |
| |7.977229
| |
| |[[9edo]]
| |
| |1249.313031
| |
| |3
| |
| |3
| |
| |4
| |
| |4
| |
| |-
| |
| |[[22zpi]]
| |
| |8.949991971429
| |
| |134.078333
| |
| |3.998567
| |
| |0.954565
| |
| |13.186387
| |
| |[[9edo]]
| |
| |1206.704993
| |
| |7
| |
| |5
| |
| |8
| |
| |6
| |
| |-
| |
| |[[23zpi]]
| |
| |9.242995389543
| |
| |129.828043
| |
| |1.238064
| |
| |0.161912
| |
| |6.821862
| |
| |[[9edo]]
| |
| |1168.452384
| |
| |1
| |
| |1
| |
| |2
| |
| |2
| |
| |-
| |
| |[[24zpi]]
| |
| |9.492267674926
| |
| |126.418685
| |
| |1.952783
| |
| |0.359829
| |
| |10.156929
| |
| |[[9edo]]
| |
| |1137.768168
| |
| |1
| |
| |1
| |
| |3
| |
| |3
| |
| |-
| |
| |[[25zpi]]
| |
| |9.724186586529
| |
| |123.403638
| |
| |0.740985
| |
| |0.074196
| |
| |5.272217
| |
| |[[10edo]]
| |
| |1234.036379
| |
| |1
| |
| |1
| |
| |2
| |
| |2
| |
| |-
| |
| |[[26zpi]]
| |
| |10.008456337259
| |
| |119.898610
| |
| |4.477141
| |
| |1.082282
| |
| |14.181485
| |
| |[[10edo]]
| |
| |1198.986097
| |
| |7
| |
| |3
| |
| |8
| |
| |5
| |
| |-
| |
| |[[27zpi]]
| |
| |10.307582490254
| |
| |116.419151
| |
| |1.505698
| |
| |0.225586
| |
| |8.414283
| |
| |[[10edo]]
| |
| |1164.191508
| |
| |3
| |
| |3
| |
| |4
| |
| |4
| |
| |-
| |
| |[[28zpi]]
| |
| |10.511042552717
| |
| |114.165650
| |
| |0.519217
| |
| |0.045875
| |
| |4.782443
| |
| |[[11edo]]
| |
| |1255.822145
| |
| |1
| |
| |1
| |
| |3
| |
| |3
| |
| |-
| |
| |[[29zpi]]
| |
| |10.757239444987
| |
| |111.552783
| |
| |2.933506
| |
| |0.582845
| |
| |11.704948
| |
| |[[11edo]]
| |
| |1227.080616
| |
| |1
| |
| |1
| |
| |3
| |
| |3
| |
| |-
| |
| |[[30zpi]]
| |
| |11.037364857955
| |
| |108.721603
| |
| |2.698327
| |
| |0.469089
| |
| |9.930302
| |
| |[[11edo]]
| |
| |1195.937633
| |
| |3
| |
| |3
| |
| |4
| |
| |4
| |
| |-
| |
| |[[31zpi]]
| |
| |11.301192518802
| |
| |106.183484
| |
| |2.126243
| |
| |0.355179
| |
| |9.698860
| |
| |[[11edo]]
| |
| |1168.018329
| |
| |1
| |
| |1
| |
| |3
| |
| |3
| |
| |-
| |
| |[[32zpi]]
| |
| |11.535009008294
| |
| |104.031128
| |
| |1.023117
| |
| |0.125398
| |
| |6.982530
| |
| |[[12edo]]
| |
| |1248.373537
| |
| |1
| |
| |1
| |
| |2
| |
| |2
| |
| |-
| |
| |[[33zpi]]
| |
| |11.736684783825
| |
| |102.243523
| |
| |1.198408
| |
| |0.146516
| |
| |7.026753
| |
| |[[12edo]]
| |
| |1226.922275
| |
| |3
| |
| |3
| |
| |4
| |
| |4
| |
| |-
| |
| |[[34zpi]]
| |
| |12.023183007293
| |
| |99.807181
| |
| |5.193290
| |
| |1.269599
| |
| |15.899282
| |
| |[[12edo]]
| |
| |1197.686169
| |
| |9
| |
| |5
| |
| |10
| |
| |6
| |
| |}
| |
|
| |
|
| [[Category:Edonoi]][[Category:Zeta]] | | Zeta peaks are those equal-step tunings which the zeta function suggests should "well" approximate JI for this particular (not objective) definition of "well approximating". See the page [[The Riemann zeta function and tuning]] for a fuller explanation of how zeta peaks are arrived at. |
| | |
| | == Gallery of ZPIs == |
| | |
| | === ZPIs with dedicated pages === |
| | * [[:Category:Zeta peak indexes]]'' |
| | |
| | === Table of ZPIs up to 100 steps/octave === |
| | {{User:Contribution/Gallery of Zeta Peak Indexes (1 - 574)}} |
| | |
| | === Table of the first 10 000 ZPIs === |
| | * [[User:Contribution/Gallery of Zeta Peak Indexes (1 - 10 000)]] (may take a long time to load) |
| | |
| | [[Category:Zeta peak indexes| ]] <!-- main article --> |