|
|
(33 intermediate revisions by 15 users not shown) |
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | A [[scale]] is said to be a '''constant structure''' ('''CS''') if its [[interval class]]es are distinct. That is, each [[interval size]] that occurs in the scale always spans the same number of scale steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:Sarzadoce|Sarzadoce]] and made on <tt>2015-06-11 15:57:11 UTC</tt>.<br>
| |
| : The original revision id was <tt>553712130</tt>.<br>
| |
| : The revision comment was: <tt></tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">A [[scale]] is said to have //constant structure// (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place.
| |
|
| |
|
| The term "constant structure" seems to have been first used by [[Erv Wilson]].
| | If a scale is a constant structure, that scale can be mapped to an [[isomorphic keyboard]] or similar isomorphic instrument such that each chord with the same interval structure can be played using the same fingering shape. |
|
| |
|
| To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]] ([[Scala]] can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes).
| | The term "constant structure" was coined by [[Erv Wilson]]. In academic music theory, constant structure is called the partitioning property, but Erv got there first. |
|
| |
|
| =Examples=
| | In terms of [[Rothenberg propriety]], strictly proper scales are constant structures, and proper but not strictly proper scales are not. Improper scales generally are. However, the [[22edo]] scale C D E vF# G ^Ab B C (<code>4-4-3-2-2-6-1</code>) has both ambiguity (C-vF# 4th equals vF#-C 5th) and contradiction (^Ab-B 2nd exceeds E-G 3rd). The contradiction makes it improper and the ambiguity makes it not a CS. |
|
| |
|
| This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1
| | To determine if a scale is a CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]], in which each entry gives the interval spanning the number of scale steps indicated by the column, beginning with step indicated by the row. In a CS scale, each interval in the matrix must appear in only one column, corresponding to the “constant” number of steps for that interval. |
| Here is the interval matrix of this scale:
| |
| || || **1** || **2** || **3** || **4** || **5** || **(6)** ||
| |
| || **1/1** || 1/1 || 9/8 || 5/4 || 3/2 || 5/3 || 2/1 ||
| |
| || **9/8** || 1/1 || 10/9 || 4/3 || 40/27 || 16/9 || 2/1 ||
| |
| || **5/4** || 1/1 || 6/5 || 4/3 || 8/5 || 9/5 || 2/1 ||
| |
| || **3/2** || 1/1 || 10/9 || 4/3 || 3/2 || 5/3 || 2/1 ||
| |
| || **5/3** || 1/1 || 6/5 || 27/20 || 3/2 || 9/5 || 2/1 ||
| |
| Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the "fourth" of this scale - never the "third" or "fifth".
| |
|
| |
|
| | == Examples == |
|
| |
|
| This pentatonic scale is not a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1
| | === Pentatonic scales === |
| Its interval matrix:
| |
| || || **1** || **2** || **3** || **4** || **5** || **(6)** ||
| |
| || **1/1** || 1/1 || 25/24 || <span style="background-color: #ffcc44;">6/5</span> || 3/2 || <span style="background-color: #ffcc44;">5/3</span> || 2/1 ||
| |
| || **25/24** || 1/1 || 144/125 || 36/25 || <span style="background-color: #ffcc44;">8/5</span> || 48/25 || 2/1 ||
| |
| || **6/5** || 1/1 || <span style="background-color: #ffcc44;">5/4</span> || 25/18 || <span style="background-color: #ffcc44;">5/3</span> || 125/72 || 2/1 ||
| |
| || **3/2** || 1/1 || 10/9 || 4/3 || 25/18 || <span style="background-color: #ffcc44;">8/5</span> || 2/1 ||
| |
| || **5/3** || 1/1 || <span style="background-color: #ffcc44;">6/5</span> || <span style="background-color: #ffcc44;">5/4</span> || 36/25 || 9/5 || 2/1 ||
| |
| Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the "second" and "third" steps of the scale. Thus, this scale does not have constant structure.
| |
|
| |
|
| | This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 |
|
| |
|
| Another example of a familiar scale that is not CS is the 7-note diatonic scale in [[12edo]].
| | Here is the interval matrix of this scale: |
| Interval matrix as steps of 12edo:
| |
| || || **1** || **2** || **3** || **4** || **5** || **6** || **7** || **(8)** ||
| |
| || 0 || 0 || 2 || 4 || 5 || 7 || 9 || 11 || 12 ||
| |
| || **2** || 0 || 2 || 3 || 5 || 7 || 9 || 11 || 12 ||
| |
| || **4** || 0 || 1 || 3 || 5 || 7 || 8 || 10 || 12 ||
| |
| || **7** || 0 || 2 || 4 || <span style="background-color: #ffcc44;">6</span> || 7 || 9 || 11 || 12 ||
| |
| || **9** || 0 || 2 || 4 || 5 || 7 || 9 || 10 || 12 ||
| |
| || **11** || 0 || 2 || 3 || 5 || 7 || 8 || 10 || 12 ||
| |
| || **12** || 0 || 1 || 3 || 5 || <span style="background-color: #ffcc44;">6</span> || 8 || 10 || 12 ||
| |
|
| |
|
| Interval matrix as note names:
| | {| class="wikitable center-all" |
| || || **1** || **2** || **3** || **4** || **5** || **6** || **7** || **(8)** ||
| | ! |
| || **C** || C || D || E || F || G || A || B || C || | | ! 1 |
| || **D** || C || D || Eb || F || G || A || B || C || | | ! 2 |
| || **E** || C || Db || Eb || F || G || Ab || B || C || | | ! 3 |
| || **F** || C || D || E || <span style="background-color: #ffcc44;">F#</span> || G || A || B || C || | | ! 4 |
| || **G** || C || D || E || F || G || A || Bb || C || | | ! 5 |
| || **A** || C || D || Eb || F || G || Ab || Bb || C || | | ! (6) |
| || **B** || C || Db || Eb || F || <span style="background-color: #ffcc44;">Gb</span> || Ab || Bb || C || | | |- |
| | ! 1/1 |
| | | 1/1 |
| | | 9/8 |
| | | 5/4 |
| | | 3/2 |
| | | 5/3 |
| | | 2/1 |
| | |- |
| | ! 9/8 |
| | | 1/1 |
| | | 10/9 |
| | | 4/3 |
| | | 40/27 |
| | | 16/9 |
| | | 2/1 |
| | |- |
| | ! 5/4 |
| | | 1/1 |
| | | 6/5 |
| | | 4/3 |
| | | 8/5 |
| | | 9/5 |
| | | 2/1 |
| | |- |
| | ! 3/2 |
| | | 1/1 |
| | | 10/9 |
| | | 4/3 |
| | | 3/2 |
| | | 5/3 |
| | | 2/1 |
| | |- |
| | ! 5/3 |
| | | 1/1 |
| | | 6/5 |
| | | 27/20 |
| | | 3/2 |
| | | 9/5 |
| | | 2/1 |
| | |} |
| | Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, always spans four steps of this scale — never three or five. |
|
| |
|
| F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, would have constant structure.)
| | In contrast, this pentatonic scale is ''not'' a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1 |
|
| |
|
| =Density of CS Scales in EDO's=
| | Its interval matrix: |
|
| |
|
| || **EDO** || **Number of CS Scales** || **Percent of Scales CS** || **Corresponding Fraction** || | | {| class="wikitable center-all" |
| || 1 || 1 || 100.0% || 1/1 ||
| | ! |
| || 2 || 1 || 100.0% || 1/1 || | | ! 1 |
| || 3 || 2 || 100.0% || 1/1 || | | ! 2 |
| || 4 || 2 || 66.7% || 2/3 || | | ! 3 |
| || 5 || 5 || 83.3% || 5/6 || | | ! 4 |
| || 6 || 4 || 44.4% || 4/9 || | | ! 5 |
| || 7 || 11 || 61.1% || 11/18 || | | ! (6) |
| || 8 || 11 || 36.7% || 11/30 || | | |- |
| || 9 || 22 || 39.3% || 11/28 || | | ! 1/1 |
| || 10 || 20 || 20.2% || 20/99 || | | | 1/1 |
| || 11 || 45 || 24.2% || 15/62 || | | | 25/24 |
| || 12 || 47 || 14.0% || 47/335 ||
| | | <span style="background-color: #ffcc44;">6/5</span> |
| || 13 || 85 || 13.5% || 17/126 || | | | 3/2 |
| || 14 || 88 || 7.6% || 88/1161 || | | | <span style="background-color: #ffcc44;">5/3</span> |
| || 15 || 163 || 7.5% || 163/2182 || | | | 2/1 |
| || 16 || 165 || 4.0% || 11/272 || | | |- |
| || 17 || 294 || 3.8% || 49/1285 || | | ! 25/24 |
| || 18 || 313 || 2.2% || 313/14532 || | | | 1/1 |
| || 19 || 534 || 1.9% || 89/4599 ||
| | | 144/125 |
| || 20 || 541 || 1.0% || 541/52377 ||
| | | 36/25 |
| | | <span style="background-color: #ffcc44;">8/5</span> |
| | | 48/25 |
| | | 2/1 |
| | |- |
| | ! 6/5 |
| | | 1/1 |
| | | <span style="background-color: #ffcc44;">5/4</span> |
| | | 25/18 |
| | | <span style="background-color: #ffcc44;">5/3</span> |
| | | 125/72 |
| | | 2/1 |
| | |- |
| | ! 3/2 |
| | | 1/1 |
| | | 10/9 |
| | | 4/3 |
| | | 25/18 |
| | | <span style="background-color: #ffcc44;">8/5</span> |
| | | 2/1 |
| | |- |
| | ! 5/3 |
| | | 1/1 |
| | | <span style="background-color: #ffcc44;">6/5</span> |
| | | <span style="background-color: #ffcc44;">5/4</span> |
| | | 36/25 |
| | | 9/5 |
| | | 2/1 |
| | |} |
| | Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as either two or three steps of the scale. Thus, this scale is not a constant structure. |
|
| |
|
| =See also= | | === Diatonic scales === |
| [[Scale properties simplified]]
| |
| [[epimorphic]]
| |
| [[http://tonalsoft.com/enc/c/constant-structure.aspx|Constant structure]] (Tonalsoft Encyclopedia)
| |
| [[http://anaphoria.com/wilsonintroMOS.html#cs|Introduction to Erv Wilson's Moments of Symmetry]]
| |
|
| |
|
| [[media type="custom" key="26024358"]]</pre></div>
| | Another example of a familiar scale that is ''not'' CS is the [[12edo]] tuning of the 7-note [[diatonic scale]]. |
| <h4>Original HTML content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>constant structure</title></head><body>A <a class="wiki_link" href="/scale">scale</a> is said to have <em>constant structure</em> (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place.<br />
| |
| <br />
| |
| The term &quot;constant structure&quot; seems to have been first used by <a class="wiki_link" href="/Erv%20Wilson">Erv Wilson</a>.<br />
| |
| <br />
| |
| To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an <a class="wiki_link" href="/interval%20matrix">interval matrix</a> (<a class="wiki_link" href="/Scala">Scala</a> can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes).<br />
| |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:1:&lt;h1&gt; --><h1 id="toc0"><a name="Examples"></a><!-- ws:end:WikiTextHeadingRule:1 -->Examples</h1>
| |
| <br />
| |
| This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1<br />
| |
| Here is the interval matrix of this scale:<br />
| |
|
| |
|
| | Its interval matrix: |
|
| |
|
| <table class="wiki_table">
| | {| class="wikitable center-all" |
| <tr>
| | ! |
| <td><br />
| | ! 1 |
| </td>
| | ! 2 |
| <td><strong>1</strong><br />
| | ! 3 |
| </td>
| | ! 4 |
| <td><strong>2</strong><br />
| | ! 5 |
| </td>
| | ! 6 |
| <td><strong>3</strong><br />
| | ! 7 |
| </td>
| | ! (8) |
| <td><strong>4</strong><br />
| | |- |
| </td>
| | ! 0\12 |
| <td><strong>5</strong><br />
| | | 0\12 |
| </td>
| | | 2\12 |
| <td><strong>(6)</strong><br />
| | | 4\12 |
| </td>
| | | 5\12 |
| </tr>
| | | 7\12 |
| <tr>
| | | 9\12 |
| <td><strong>1/1</strong><br />
| | | 11\12 |
| </td>
| | | 12\12 |
| <td>1/1<br />
| | |- |
| </td>
| | ! 2\12 |
| <td>9/8<br />
| | | 0\12 |
| </td>
| | | 2\12 |
| <td>5/4<br />
| | | 3\12 |
| </td>
| | | 5\12 |
| <td>3/2<br />
| | | 7\12 |
| </td>
| | | 9\12 |
| <td>5/3<br />
| | | 10\12 |
| </td>
| | | 12\12 |
| <td>2/1<br />
| | |- |
| </td>
| | ! 4\12 |
| </tr>
| | | 0\12 |
| <tr>
| | | 1\12 |
| <td><strong>9/8</strong><br />
| | | 3\12 |
| </td>
| | | 5\12 |
| <td>1/1<br />
| | | 7\12 |
| </td>
| | | 8\12 |
| <td>10/9<br />
| | | 10\12 |
| </td>
| | | 12\12 |
| <td>4/3<br />
| | |- |
| </td>
| | ! 5\12 |
| <td>40/27<br />
| | | 0\12 |
| </td>
| | | 2\12 |
| <td>16/9<br />
| | | 4\12 |
| </td>
| | | <span style="background-color: #ffcc44;">6\12</span> |
| <td>2/1<br />
| | | 7\12 |
| </td>
| | | 9\12 |
| </tr>
| | | 11\12 |
| <tr>
| | | 12\12 |
| <td><strong>5/4</strong><br />
| | |- |
| </td>
| | ! 7\12 |
| <td>1/1<br />
| | | 0\12 |
| </td>
| | | 2\12 |
| <td>6/5<br />
| | | 4\12 |
| </td>
| | | 5\12 |
| <td>4/3<br />
| | | 7\12 |
| </td>
| | | 9\12 |
| <td>8/5<br />
| | | 10\12 |
| </td>
| | | 12\12 |
| <td>9/5<br />
| | |- |
| </td>
| | ! 9\12 |
| <td>2/1<br />
| | | 0\12 |
| </td>
| | | 2\12 |
| </tr>
| | | 3\12 |
| <tr>
| | | 5\12 |
| <td><strong>3/2</strong><br />
| | | 7\12 |
| </td>
| | | 8\12 |
| <td>1/1<br />
| | | 10\12 |
| </td>
| | | 12\12 |
| <td>10/9<br />
| | |- |
| </td>
| | ! 11\12 |
| <td>4/3<br />
| | | 0\12 |
| </td>
| | | 1\12 |
| <td>3/2<br />
| | | 3\12 |
| </td>
| | | 5\12 |
| <td>5/3<br />
| | | <span style="background-color: #ffcc44;">6\12</span> |
| </td>
| | | 8\12 |
| <td>2/1<br />
| | | 10\12 |
| </td>
| | | 12\12 |
| </tr>
| | |} |
| <tr>
| |
| <td><strong>5/3</strong><br />
| |
| </td>
| |
| <td>1/1<br />
| |
| </td>
| |
| <td>6/5<br />
| |
| </td>
| |
| <td>27/20<br />
| |
| </td>
| |
| <td>3/2<br />
| |
| </td>
| |
| <td>9/5<br />
| |
| </td>
| |
| <td>2/1<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
| | |
| Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the &quot;fourth&quot; of this scale - never the &quot;third&quot; or &quot;fifth&quot;.<br />
| |
| <br />
| |
| <br />
| |
| This pentatonic scale is not a constant structure: 1/1 - 25/24 - 6/5 - 3/2 - 5/3 - 2/1<br />
| |
| Its interval matrix:<br />
| |
|
| |
|
| | The highlighted intervals, from F to B and from B to F, are the same size in 12edo: 6\12, or 600 cents. From F to B, this interval spans four steps of our diatonic scale (an “augmented fourth”); but from B to F it spans five (a “diminished fifth”). Since the same interval spans different numbers of scale steps at different points in the scale, this scale is not a constant structure. |
|
| |
|
| <table class="wiki_table">
| | However, in other tunings of the diatonic scale, the F–B and B–F intervals may have distinct sizes. For example, [[31edo]] (meantone) tunes F–B and B–F to 15\31 (581¢) and 16\31 (619¢) respectively: |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><strong>1</strong><br />
| |
| </td>
| |
| <td><strong>2</strong><br />
| |
| </td>
| |
| <td><strong>3</strong><br />
| |
| </td>
| |
| <td><strong>4</strong><br />
| |
| </td>
| |
| <td><strong>5</strong><br />
| |
| </td>
| |
| <td><strong>(6)</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>1/1</strong><br />
| |
| </td>
| |
| <td>1/1<br />
| |
| </td>
| |
| <td>25/24<br />
| |
| </td>
| |
| <td><span style="background-color: #ffcc44;">6/5</span><br />
| |
| </td>
| |
| <td>3/2<br />
| |
| </td>
| |
| <td><span style="background-color: #ffcc44;">5/3</span><br />
| |
| </td>
| |
| <td>2/1<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>25/24</strong><br />
| |
| </td>
| |
| <td>1/1<br />
| |
| </td>
| |
| <td>144/125<br />
| |
| </td>
| |
| <td>36/25<br />
| |
| </td>
| |
| <td><span style="background-color: #ffcc44;">8/5</span><br />
| |
| </td>
| |
| <td>48/25<br />
| |
| </td>
| |
| <td>2/1<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>6/5</strong><br />
| |
| </td>
| |
| <td>1/1<br />
| |
| </td>
| |
| <td><span style="background-color: #ffcc44;">5/4</span><br />
| |
| </td>
| |
| <td>25/18<br />
| |
| </td>
| |
| <td><span style="background-color: #ffcc44;">5/3</span><br />
| |
| </td>
| |
| <td>125/72<br />
| |
| </td>
| |
| <td>2/1<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>3/2</strong><br />
| |
| </td>
| |
| <td>1/1<br />
| |
| </td>
| |
| <td>10/9<br />
| |
| </td>
| |
| <td>4/3<br />
| |
| </td>
| |
| <td>25/18<br />
| |
| </td>
| |
| <td><span style="background-color: #ffcc44;">8/5</span><br />
| |
| </td>
| |
| <td>2/1<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>5/3</strong><br />
| |
| </td>
| |
| <td>1/1<br />
| |
| </td>
| |
| <td><span style="background-color: #ffcc44;">6/5</span><br />
| |
| </td>
| |
| <td><span style="background-color: #ffcc44;">5/4</span><br />
| |
| </td>
| |
| <td>36/25<br />
| |
| </td>
| |
| <td>9/5<br />
| |
| </td>
| |
| <td>2/1<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the &quot;second&quot; and &quot;third&quot; steps of the scale. Thus, this scale does not have constant structure.<br />
| | {| class="wikitable center-all" |
| <br />
| | ! |
| <br />
| | ! 1 |
| Another example of a familiar scale that is not CS is the 7-note diatonic scale in <a class="wiki_link" href="/12edo">12edo</a>.<br />
| | ! 2 |
| Interval matrix as steps of 12edo:<br />
| | ! 3 |
| | ! 4 |
| | ! 5 |
| | ! 6 |
| | ! 7 |
| | ! (8) |
| | |- |
| | ! 0\31 |
| | | 0\31 |
| | | 5\31 |
| | | 10\31 |
| | | 13\31 |
| | | 18\31 |
| | | 23\31 |
| | | 28\31 |
| | | 31\31 |
| | |- |
| | ! 5\31 |
| | | 0\31 |
| | | 5\31 |
| | | 8\31 |
| | | 13\31 |
| | | 18\31 |
| | | 23\31 |
| | | 26\31 |
| | | 31\31 |
| | |- |
| | ! 10\31 |
| | | 0\31 |
| | | 3\31 |
| | | 8\31 |
| | | 13\31 |
| | | 18\31 |
| | | 21\31 |
| | | 26\31 |
| | | 31\31 |
| | |- |
| | ! 13\31 |
| | | 0\31 |
| | | 5\31 |
| | | 10\31 |
| | | <span style="background-color: #ffcc44;">15\31</span> |
| | | 18\31 |
| | | 23\31 |
| | | 28\31 |
| | | 31\31 |
| | |- |
| | ! 18\31 |
| | | 0\31 |
| | | 5\31 |
| | | 10\31 |
| | | 13\31 |
| | | 18\31 |
| | | 23\31 |
| | | 26\31 |
| | | 31\31 |
| | |- |
| | ! 23\31 |
| | | 0\31 |
| | | 5\31 |
| | | 8\31 |
| | | 13\31 |
| | | 18\31 |
| | | 21\31 |
| | | 26\31 |
| | | 31\31 |
| | |- |
| | ! 28\31 |
| | | 0\31 |
| | | 3\31 |
| | | 8\31 |
| | | 13\31 |
| | | <span style="background-color: #ffcc44;">16\31</span> |
| | | 21\31 |
| | | 26\31 |
| | | 31\31 |
| | |} |
|
| |
|
| | Since each interval in the 31edo table appears in a consistent column, the 31edo tuning of the diatonic scale ''is'' a constant structure. |
|
| |
|
| <table class="wiki_table">
| | Similarly, the [[22edo]] diatonic scale, which tunes F–B wider than B–F, is ''also'' a constant structure. Even though it has a four-scale-step interval that is larger than a five-step interval (making it “improper”), each distinct interval size still appears in only one column: |
| <tr>
| |
| <td><br />
| |
| </td>
| |
| <td><strong>1</strong><br />
| |
| </td>
| |
| <td><strong>2</strong><br />
| |
| </td>
| |
| <td><strong>3</strong><br />
| |
| </td>
| |
| <td><strong>4</strong><br />
| |
| </td>
| |
| <td><strong>5</strong><br />
| |
| </td>
| |
| <td><strong>6</strong><br />
| |
| </td>
| |
| <td><strong>7</strong><br />
| |
| </td>
| |
| <td><strong>(8)</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>0<br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td>2<br />
| |
| </td>
| |
| <td>4<br />
| |
| </td>
| |
| <td>5<br />
| |
| </td>
| |
| <td>7<br />
| |
| </td>
| |
| <td>9<br />
| |
| </td>
| |
| <td>11<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>2</strong><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td>2<br />
| |
| </td>
| |
| <td>3<br />
| |
| </td>
| |
| <td>5<br />
| |
| </td>
| |
| <td>7<br />
| |
| </td>
| |
| <td>9<br />
| |
| </td>
| |
| <td>11<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>4</strong><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td>1<br />
| |
| </td>
| |
| <td>3<br />
| |
| </td>
| |
| <td>5<br />
| |
| </td>
| |
| <td>7<br />
| |
| </td>
| |
| <td>8<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>7</strong><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td>2<br />
| |
| </td>
| |
| <td>4<br />
| |
| </td>
| |
| <td><span style="background-color: #ffcc44;">6</span><br />
| |
| </td>
| |
| <td>7<br />
| |
| </td>
| |
| <td>9<br />
| |
| </td>
| |
| <td>11<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>9</strong><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td>2<br />
| |
| </td>
| |
| <td>4<br />
| |
| </td>
| |
| <td>5<br />
| |
| </td>
| |
| <td>7<br />
| |
| </td>
| |
| <td>9<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>11</strong><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td>2<br />
| |
| </td>
| |
| <td>3<br />
| |
| </td>
| |
| <td>5<br />
| |
| </td>
| |
| <td>7<br />
| |
| </td>
| |
| <td>8<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>12</strong><br />
| |
| </td>
| |
| <td>0<br />
| |
| </td>
| |
| <td>1<br />
| |
| </td>
| |
| <td>3<br />
| |
| </td>
| |
| <td>5<br />
| |
| </td>
| |
| <td><span style="background-color: #ffcc44;">6</span><br />
| |
| </td>
| |
| <td>8<br />
| |
| </td>
| |
| <td>10<br />
| |
| </td>
| |
| <td>12<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | {| class="wikitable center-all" |
| Interval matrix as note names:<br />
| | ! |
| | ! 1 |
| | ! 2 |
| | ! 3 |
| | ! 4 |
| | ! 5 |
| | ! 6 |
| | ! 7 |
| | ! (8) |
| | |- |
| | ! 0\22 |
| | | 0\22 |
| | | 4\22 |
| | | 8\22 |
| | | 9\22 |
| | | 13\22 |
| | | 17\22 |
| | | 21\22 |
| | | 22\22 |
| | |- |
| | ! 4\22 |
| | | 0\22 |
| | | 4\22 |
| | | 5\22 |
| | | 9\22 |
| | | 13\22 |
| | | 17\22 |
| | | 18\22 |
| | | 22\22 |
| | |- |
| | ! 8\22 |
| | | 0\22 |
| | | 1\22 |
| | | 5\22 |
| | | 9\22 |
| | | 13\22 |
| | | 14\22 |
| | | 18\22 |
| | | 22\22 |
| | |- |
| | ! 9\22 |
| | | 0\22 |
| | | 4\22 |
| | | 8\22 |
| | | <span style="background-color: #ffcc44;">12\22</span> |
| | | 13\22 |
| | | 17\22 |
| | | 21\22 |
| | | 22\22 |
| | |- |
| | ! 13\22 |
| | | 0\22 |
| | | 4\22 |
| | | 8\22 |
| | | 9\22 |
| | | 13\22 |
| | | 17\22 |
| | | 18\22 |
| | | 22\22 |
| | |- |
| | ! 17\22 |
| | | 0\22 |
| | | 4\22 |
| | | 5\22 |
| | | 9\22 |
| | | 13\22 |
| | | 14\22 |
| | | 18\22 |
| | | 22\22 |
| | |- |
| | ! 21\22 |
| | | 0\22 |
| | | 1\22 |
| | | 5\22 |
| | | 9\22 |
| | | <span style="background-color: #ffcc44;">10\22</span> |
| | | 14\22 |
| | | 18\22 |
| | | 22\22 |
| | |} |
|
| |
|
| | == Density of CS scales in EDOs == |
|
| |
|
| <table class="wiki_table">
| | {| class="wikitable right-all" |
| <tr>
| | ! EDO |
| <td><br />
| | ! Number of CS Scales |
| </td>
| | ! Percent of Scales CS |
| <td><strong>1</strong><br />
| | ! Corresponding Fraction |
| </td>
| | |- |
| <td><strong>2</strong><br />
| | | 1 |
| </td>
| | | 1 |
| <td><strong>3</strong><br />
| | | 100.0% |
| </td>
| | | 1/1 |
| <td><strong>4</strong><br />
| | |- |
| </td>
| | | 2 |
| <td><strong>5</strong><br />
| | | 1 |
| </td>
| | | 100.0% |
| <td><strong>6</strong><br />
| | | 1/1 |
| </td>
| | |- |
| <td><strong>7</strong><br />
| | | 3 |
| </td>
| | | 2 |
| <td><strong>(8)</strong><br />
| | | 100.0% |
| </td>
| | | 1/1 |
| </tr>
| | |- |
| <tr>
| | | 4 |
| <td><strong>C</strong><br />
| | | 2 |
| </td>
| | | 66.7% |
| <td>C<br />
| | | 2/3 |
| </td>
| | |- |
| <td>D<br />
| | | 5 |
| </td>
| | | 5 |
| <td>E<br />
| | | 83.3% |
| </td>
| | | 5/6 |
| <td>F<br />
| | |- |
| </td>
| | | 6 |
| <td>G<br />
| | | 4 |
| </td>
| | | 44.4% |
| <td>A<br />
| | | 4/9 |
| </td>
| | |- |
| <td>B<br />
| | | 7 |
| </td>
| | | 11 |
| <td>C<br />
| | | 61.1% |
| </td>
| | | 11/18 |
| </tr>
| | |- |
| <tr>
| | | 8 |
| <td><strong>D</strong><br />
| | | 11 |
| </td>
| | | 36.7% |
| <td>C<br />
| | | 11/30 |
| </td>
| | |- |
| <td>D<br />
| | | 9 |
| </td>
| | | 22 |
| <td>Eb<br />
| | | 39.3% |
| </td>
| | | 11/28 |
| <td>F<br />
| | |- |
| </td>
| | | 10 |
| <td>G<br />
| | | 20 |
| </td>
| | | 20.2% |
| <td>A<br />
| | | 20/99 |
| </td>
| | |- |
| <td>B<br />
| | | 11 |
| </td>
| | | 45 |
| <td>C<br />
| | | 24.2% |
| </td>
| | | 15/62 |
| </tr>
| | |- |
| <tr>
| | | 12 |
| <td><strong>E</strong><br />
| | | 47 |
| </td>
| | | 14.0% |
| <td>C<br />
| | | 47/335 |
| </td>
| | |- |
| <td>Db<br />
| | | 13 |
| </td>
| | | 85 |
| <td>Eb<br />
| | | 13.5% |
| </td>
| | | 17/126 |
| <td>F<br />
| | |- |
| </td>
| | | 14 |
| <td>G<br />
| | | 88 |
| </td>
| | | 7.6% |
| <td>Ab<br />
| | | 88/1161 |
| </td>
| | |- |
| <td>B<br />
| | | 15 |
| </td>
| | | 163 |
| <td>C<br />
| | | 7.5% |
| </td>
| | | 163/2182 |
| </tr>
| | |- |
| <tr>
| | | 16 |
| <td><strong>F</strong><br />
| | | 165 |
| </td>
| | | 4.0% |
| <td>C<br />
| | | 11/272 |
| </td>
| | |- |
| <td>D<br />
| | | 17 |
| </td>
| | | 294 |
| <td>E<br />
| | | 3.8% |
| </td>
| | | 49/1285 |
| <td><span style="background-color: #ffcc44;">F#</span><br />
| | |- |
| </td>
| | | 18 |
| <td>G<br />
| | | 313 |
| </td>
| | | 2.2% |
| <td>A<br />
| | | 313/14532 |
| </td>
| | |- |
| <td>B<br />
| | | 19 |
| </td>
| | | 534 |
| <td>C<br />
| | | 1.9% |
| </td>
| | | 89/4599 |
| </tr>
| | |- |
| <tr>
| | | 20 |
| <td><strong>G</strong><br />
| | | 541 |
| </td>
| | | 1.0% |
| <td>C<br />
| | | 541/52377 |
| </td>
| | |} |
| <td>D<br />
| |
| </td>
| |
| <td>E<br />
| |
| </td>
| |
| <td>F<br />
| |
| </td>
| |
| <td>G<br />
| |
| </td>
| |
| <td>A<br />
| |
| </td>
| |
| <td>Bb<br />
| |
| </td>
| |
| <td>C<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>A</strong><br />
| |
| </td>
| |
| <td>C<br />
| |
| </td>
| |
| <td>D<br />
| |
| </td>
| |
| <td>Eb<br />
| |
| </td>
| |
| <td>F<br />
| |
| </td>
| |
| <td>G<br />
| |
| </td>
| |
| <td>Ab<br />
| |
| </td>
| |
| <td>Bb<br />
| |
| </td>
| |
| <td>C<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td><strong>B</strong><br />
| |
| </td>
| |
| <td>C<br />
| |
| </td>
| |
| <td>Db<br />
| |
| </td>
| |
| <td>Eb<br />
| |
| </td>
| |
| <td>F<br />
| |
| </td>
| |
| <td><span style="background-color: #ffcc44;">Gb</span><br />
| |
| </td>
| |
| <td>Ab<br />
| |
| </td>
| |
| <td>Bb<br />
| |
| </td>
| |
| <td>C<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | == Novel terminology == |
| F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, would have constant structure.)<br />
| | An interval that occurs in a scale is ''CS-consistent''{{idiosyncratic}} if it always subtends the same number of scale steps. A scale is thus CS if and only if all its intervals are CS-consistent. This term could be useful because someone might only care about certain primes in a subgroup being CS-consistent. |
| <br />
| |
| <!-- ws:start:WikiTextHeadingRule:3:&lt;h1&gt; --><h1 id="toc1"><a name="Density of CS Scales in EDO's"></a><!-- ws:end:WikiTextHeadingRule:3 -->Density of CS Scales in EDO's</h1>
| |
| <br />
| |
|
| |
|
| | == See also == |
|
| |
|
| <table class="wiki_table">
| | * [[Gallery of CS Scales]] |
| <tr>
| | * [[Glossary of scale properties]] |
| <td><strong>EDO</strong><br />
| | * [[epimorphic]] |
| </td>
| | * [http://tonalsoft.com/enc/c/constant-structure.aspx Constant structure] (Tonalsoft Encyclopedia) |
| <td><strong>Number of CS Scales</strong><br />
| | * [http://anaphoria.com/wilsonintroMOS.html#cs Introduction to Erv Wilson's Moments of Symmetry] |
| </td>
| |
| <td><strong>Percent of Scales CS</strong><br />
| |
| </td>
| |
| <td><strong>Corresponding Fraction</strong><br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>1<br />
| |
| </td>
| |
| <td>1<br />
| |
| </td>
| |
| <td>100.0%<br />
| |
| </td>
| |
| <td>1/1<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>2<br />
| |
| </td>
| |
| <td>1<br />
| |
| </td>
| |
| <td>100.0%<br />
| |
| </td>
| |
| <td>1/1<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>3<br />
| |
| </td>
| |
| <td>2<br />
| |
| </td>
| |
| <td>100.0%<br />
| |
| </td>
| |
| <td>1/1<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>4<br />
| |
| </td>
| |
| <td>2<br />
| |
| </td>
| |
| <td>66.7%<br />
| |
| </td>
| |
| <td>2/3<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>5<br />
| |
| </td>
| |
| <td>5<br />
| |
| </td>
| |
| <td>83.3%<br />
| |
| </td>
| |
| <td>5/6<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>6<br />
| |
| </td>
| |
| <td>4<br />
| |
| </td>
| |
| <td>44.4%<br />
| |
| </td>
| |
| <td>4/9<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>7<br />
| |
| </td>
| |
| <td>11<br />
| |
| </td>
| |
| <td>61.1%<br />
| |
| </td>
| |
| <td>11/18<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>8<br />
| |
| </td>
| |
| <td>11<br />
| |
| </td>
| |
| <td>36.7%<br />
| |
| </td>
| |
| <td>11/30<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>9<br />
| |
| </td>
| |
| <td>22<br />
| |
| </td>
| |
| <td>39.3%<br />
| |
| </td>
| |
| <td>11/28<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>10<br />
| |
| </td>
| |
| <td>20<br />
| |
| </td>
| |
| <td>20.2%<br />
| |
| </td>
| |
| <td>20/99<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>11<br />
| |
| </td>
| |
| <td>45<br />
| |
| </td>
| |
| <td>24.2%<br />
| |
| </td>
| |
| <td>15/62<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>12<br />
| |
| </td>
| |
| <td>47<br />
| |
| </td>
| |
| <td>14.0%<br />
| |
| </td>
| |
| <td>47/335<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>13<br />
| |
| </td>
| |
| <td>85<br />
| |
| </td>
| |
| <td>13.5%<br />
| |
| </td>
| |
| <td>17/126<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>14<br />
| |
| </td>
| |
| <td>88<br />
| |
| </td>
| |
| <td>7.6%<br />
| |
| </td>
| |
| <td>88/1161<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>15<br />
| |
| </td>
| |
| <td>163<br />
| |
| </td>
| |
| <td>7.5%<br />
| |
| </td>
| |
| <td>163/2182<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>16<br />
| |
| </td>
| |
| <td>165<br />
| |
| </td>
| |
| <td>4.0%<br />
| |
| </td>
| |
| <td>11/272<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>17<br />
| |
| </td>
| |
| <td>294<br />
| |
| </td>
| |
| <td>3.8%<br />
| |
| </td>
| |
| <td>49/1285<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>18<br />
| |
| </td>
| |
| <td>313<br />
| |
| </td>
| |
| <td>2.2%<br />
| |
| </td>
| |
| <td>313/14532<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>19<br />
| |
| </td>
| |
| <td>534<br />
| |
| </td>
| |
| <td>1.9%<br />
| |
| </td>
| |
| <td>89/4599<br />
| |
| </td>
| |
| </tr>
| |
| <tr>
| |
| <td>20<br />
| |
| </td>
| |
| <td>541<br />
| |
| </td>
| |
| <td>1.0%<br />
| |
| </td>
| |
| <td>541/52377<br />
| |
| </td>
| |
| </tr>
| |
| </table>
| |
|
| |
|
| <br />
| | [[Category:Scale]] |
| <!-- ws:start:WikiTextHeadingRule:5:&lt;h1&gt; --><h1 id="toc2"><a name="See also"></a><!-- ws:end:WikiTextHeadingRule:5 -->See also</h1>
| | [[Category:Terms]] |
| <a class="wiki_link" href="/Scale%20properties%20simplified">Scale properties simplified</a><br />
| | [[Category:Erv Wilson]] |
| <a class="wiki_link" href="/epimorphic">epimorphic</a><br />
| |
| <a class="wiki_link_ext" href="http://tonalsoft.com/enc/c/constant-structure.aspx" rel="nofollow">Constant structure</a> (Tonalsoft Encyclopedia)<br />
| |
| <a class="wiki_link_ext" href="http://anaphoria.com/wilsonintroMOS.html#cs" rel="nofollow">Introduction to Erv Wilson's Moments of Symmetry</a><br />
| |
| <br />
| |
| <!-- ws:start:WikiTextMediaRule:0:&lt;img src=&quot;http://www.wikispaces.com/site/embedthumbnail/custom/26024358?h=0&amp;w=0&quot; class=&quot;WikiMedia WikiMediaCustom&quot; id=&quot;wikitext@@media@@type=&amp;quot;custom&amp;quot; key=&amp;quot;26024358&amp;quot;&quot; title=&quot;Custom Media&quot;/&gt; --><script type="text/javascript">
| |
| /*<![CDATA[*/
| |
| document.write('<style type="text/css"> .wiki_table td { padding: 5px; text-align:center; } <\/style>');
| |
| /*]]>*/
| |
| </script><!-- ws:end:WikiTextMediaRule:0 --></body></html></pre></div>
| |