101afdo: Difference between revisions

BudjarnLambeth (talk | contribs)
m BudjarnLambeth moved page Dalmatian scale to 101afdo over redirect: To conform with other afdo articles
BudjarnLambeth (talk | contribs)
mNo edit summary
 
(18 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Infobox AFDO|steps=101}}
{{Infobox AFDO|steps=101}}
The '''Dalmatian scale''' {{idiosyncratic}}, also known as '''[[Overtone scale|mode 101 of the harmonic series]]''' or '''[[AFDO|101afdo]]'''), is a 101-tone octave-repeating subset of the [[harmonic series]].


It is a large [[Primodality|primodal]] scale which is suited for use as a [[Neji|NEJI]] tuning. It is the 26th [[Prime harmonic series|prime mode of the harmonic series]]. Its name is a reference to the animated TV series [[wikipedia:101_Dalmatian_Street|''101 Dalmatian Street (2019)'']].
'''101afdo''' ([[AFDO|arithmetic frequency division of the octave]]), or '''101odo''' ([[otonal division]] of the octave), divides the octave into 101 parts of 1/101 each. It is a superset of [[100afdo]] and a subset of [[102afdo]]. As a scale it may be known as [[harmonic mode|mode 101 of the harmonic series]] or the [[overtone scale #Over-n scales|Over-101]] scale. This view is equivalent to 101afdo except that it has a fixed root and cannot be rotated.


=== Optimal NEJI approximations ===
It is a large [[primodality|primodal]] scale which is suited for use as a [[neji]] tuning. It is the 26th [[prime harmonic series|prime mode of the harmonic series]].
The Dalmatian scale approximates four [[EDO|EDOs]], including two [[The Riemann zeta function and tuning|Zeta peak]] EDOs, with lower [[NEJI Tables/Greatest Error|maximum error]] than any smaller mode of the harmonic series:


* [[19edo|19EDO]] (101:105:109:113:117:121:126:130:135:140:145:151:156:162:168:175:181:188:195:202)
== Theory ==
* [[24edo|24EDO]] (101:104:107:110:113:117:120:124:127:131:135:139:143:147:151:156:160:165:170:175:180:185:191:196:202)
=== Lowest-error neji approximations ===
* [[25edo|25EDO]] (101:104:107:110:113:116:119:123:126:130:133:137:141:145:149:153:157:162:166:171:176:181:186:191:196:202)
101afdo approximates five [[edo]]s, including two [[zeta peak edo]]s, with lower [[NEJI Tables/Greatest Error|maximum error]] than any smaller mode of the harmonic series:<small>
* [[27edo|27EDO]] (101:104:106:109:112:115:118:121:124:127:131:134:137:141:145:148:152:156:160:164:169:173:178:182:187:192:197:202)
* [[8edo]] (101:110:120:131:143:156:170:185:202)
* [[19edo]] (101:105:109:113:117:121:126:130:135:140:145:151:156:162:168:175:181:188:195:202)
* [[24edo]] (101:104:107:110:113:117:120:124:127:131:135:139:143:147:151:156:160:165:170:175:180:185:191:196:202)
* [[25edo]] (101:104:107:110:113:116:119:123:126:130:133:137:141:145:149:153:157:162:166:171:176:181:186:191:196:202)
* [[27edo]] (101:104:106:109:112:115:118:121:124:127:131:134:137:141:145:148:152:156:160:164:169:173:178:182:187:192:197:202)</small>


It approximates ''seven'' EDOs, including ''three'' Zeta peak EDOs, with lower [[NEJI Tables/Average Error|average error]] than any smaller mode of the harmonic series:
It approximates seven edos, including three zeta peak edos, with lower [[NEJI Tables/Average Error|average error]] than any smaller mode of the harmonic series:<small>
* [[5edo]] (101:116:133:153:176:202)
* [[12edo]] (101:107:113:120:127:135:143:151:160:170:180:191:202)
* [[14edo]] (101:106:112:117:123:129:136:143:150:158:166:174:183:192:202)
* [[22edo]] (101:104:108:111:115:118:122:126:130:134:138:143:147:152:157:162:167:173:178:184:190:196:202)
* [[24edo]] (101:104:107:110:113:117:120:124:127:131:135:139:143:147:151:156:160:165:170:175:180:185:191:196:202)
* [[25edo]] (101:104:107:110:113:116:119:123:126:130:133:137:141:145:149:153:157:162:166:171:176:181:186:191:196:202)
* [[34edo]] (<small>101:103:105:107:110:112:114:116:119:121:124:126:129:132:134:137:140:143:146:149:152:155:158:161:165:168:172:175:179:182:186:190:194:198:202</small>)</small>


* [[5edo|5EDO]] (101:116:133:153:176:202)
Best-approximating this many edos in general, and this many zeta peak edos specifically, is more than average for an afdo of this size, but it's not that unusual. [[104afdo]], for example, best-approximates similar numbers of both.
* [[12edo|12EDO]] (101:107:113:120:127:135:143:151:160:170:180:191:202)
* [[14edo|14EDO]] (101:106:112:117:123:129:136:143:150:158:166:174:183:192:202)
* [[22edo|22EDO]] (101:104:108:111:115:118:122:126:130:134:138:143:147:152:157:162:167:173:178:184:190:196:202)
* [[24edo|24EDO]] (101:104:107:110:113:117:120:124:127:131:135:139:143:147:151:156:160:165:170:175:180:185:191:196:202)
* [[25edo|25EDO]] (101:104:107:110:113:116:119:123:126:130:133:137:141:145:149:153:157:162:166:171:176:181:186:191:196:202)
* [[34edo|34EDO]] (101:103:105:107:110:112:114:116:119:121:124:126:129:132:134:137:140:143:146:149:152:155:158:161:165:168:172:175:179:182:186:190:194:198:202)


=== Table of intervals ===
== Table of intervals ==
{| class="wikitable"
{| class="wikitable mw-collapsible mw-collapsed"
|Step
|+ Intervals of mode 101 of the harmonic series
|Harmonic
|Just ratio
|[[Cent|Cents]] value
|-
|-
|1
! <small>Step</small>
|102nd
! <small>Harmonic</small>
|102/101
! <small>Just ratio</small>
|17.057
! <small>[[Cent]]s value</small>
|-
|-
|2
! <small>1</small>
|103rd
| <small>102nd</small>
|103/101
| <small>102/101</small>
|33.947
| <small>17.057</small>
|-
|-
|3
! <small>2</small>
|104th
| <small>103rd</small>
|104/101
| <small>103/101</small>
|50.674
| <small>33.947</small>
|-
|-
|4
! <small>3</small>
|105th
| <small>104th</small>
|105/101
| <small>104/101</small>
|67.241
| <small>50.674</small>
|-
|-
|5
! <small>4</small>
|106th
| <small>105th</small>
|106/101
| <small>105/101</small>
|83.651
| <small>67.241</small>
|-
|-
|6
! <small>5</small>
|107th
| <small>106th</small>
|107/101
| <small>106/101</small>
|99.907
| <small>83.651</small>
|-
|-
|7
! <small>6</small>
|108th
| <small>107th</small>
|108/101
| <small>107/101</small>
|116.011
| <small>99.907</small>
|-
|-
|8
! <small>7</small>
|109th
| <small>108th</small>
|109/101
| <small>108/101</small>
|131.967
| <small>116.011</small>
|-
|-
|9
! <small>8</small>
|110th
| <small>109th</small>
|110/101
| <small>109/101</small>
|147.778
| <small>131.967</small>
|-
|-
|10
! <small>9</small>
|111th
| <small>110th</small>
|111/101
| <small>110/101</small>
|163.445
| <small>147.778</small>
|-
|-
|11
! <small>10</small>
|112th
| <small>111th</small>
|112/101
| <small>111/101</small>
|178.972
| <small>163.445</small>
|-
|-
|12
! <small>11</small>
|113th
| <small>112th</small>
|113/101
| <small>112/101</small>
|194.361
| <small>178.972</small>
|-
|-
|13
! <small>12</small>
|114th
| <small>113th</small>
|114/101
| <small>113/101</small>
|209.614
| <small>194.361</small>
|-
|-
|14
! <small>13</small>
|115th
| <small>114th</small>
|115/101
| <small>114/101</small>
|224.734
| <small>209.614</small>
|-
|-
|15
! <small>14</small>
|116th
| <small>115th</small>
|116/101
| <small>115/101</small>
|239.723
| <small>224.734</small>
|-
|-
|16
! <small>15</small>
|117th
| <small>116th</small>
|117/101
| <small>116/101</small>
|254.584
| <small>239.723</small>
|-
|-
|17
! <small>16</small>
|118th
| <small>117th</small>
|118/101
| <small>117/101</small>
|269.318
| <small>254.584</small>
|-
|-
|18
! <small>17</small>
|119th
| <small>118th</small>
|119/101
| <small>118/101</small>
|283.928
| <small>269.318</small>
|-
|-
|19
! <small>18</small>
|120th
| <small>119th</small>
|120/101
| <small>119/101</small>
|298.415
| <small>283.928</small>
|-
|-
|20
! <small>19</small>
|121st
| <small>120th</small>
|121/101
| <small>120/101</small>
|312.782
| <small>298.415</small>
|-
|-
|21
! <small>20</small>
|122nd
| <small>121st</small>
|122/101
| <small>121/101</small>
|327.031
| <small>312.782</small>
|-
|-
|22
! <small>21</small>
|123rd
| <small>122nd</small>
|123/101
| <small>122/101</small>
|341.164
| <small>327.031</small>
|-
|-
|23
! <small>22</small>
|124th
| <small>123rd</small>
|124/101
| <small>123/101</small>
|355.182
| <small>341.164</small>
|-
|-
|24
! <small>23</small>
|125th
| <small>124th</small>
|125/101
| <small>124/101</small>
|369.087
| <small>355.182</small>
|-
|-
|25
! <small>24</small>
|126th
| <small>125th</small>
|126/101
| <small>125/101</small>
|382.882
| <small>369.087</small>
|-
|-
|26
! <small>25</small>
|127th
| <small>126th</small>
|127/101
| <small>126/101</small>
|396.568
| <small>382.882</small>
|-
|-
|27
! <small>26</small>
|128th
| <small>127th</small>
|128/101
| <small>127/101</small>
|410.146
| <small>396.568</small>
|-
|-
|28
! <small>27</small>
|129th
| <small>128th</small>
|129/101
| <small>128/101</small>
|423.619
| <small>410.146</small>
|-
|-
|29
! <small>28</small>
|130th
| <small>129th</small>
|130/101
| <small>129/101</small>
|436.988
| <small>423.619</small>
|-
|-
|30
! <small>29</small>
|131st
| <small>130th</small>
|131/101
| <small>130/101</small>
|450.254
| <small>436.988</small>
|-
|-
|31
! <small>30</small>
|132nd
| <small>131st</small>
|132/101
| <small>131/101</small>
|463.419
| <small>450.254</small>
|-
|-
|32
! <small>31</small>
|133rd
| <small>132nd</small>
|133/101
| <small>132/101</small>
|476.485
| <small>463.419</small>
|-
|-
|33
! <small>32</small>
|134th
| <small>133rd</small>
|134/101
| <small>133/101</small>
|489.453
| <small>476.485</small>
|-
|-
|34
! <small>33</small>
|135th
| <small>134th</small>
|135/101
| <small>134/101</small>
|502.325
| <small>489.453</small>
|-
|-
|35
! <small>34</small>
|136th
| <small>135th</small>
|136/101
| <small>135/101</small>
|515.102
| <small>502.325</small>
|-
|-
|36
! <small>35</small>
|137th
| <small>136th</small>
|137/101
| <small>136/101</small>
|527.785
| <small>515.102</small>
|-
|-
|37
! <small>36</small>
|138th
| <small>137th</small>
|138/101
| <small>137/101</small>
|540.376
| <small>527.785</small>
|-
|-
|38
! <small>37</small>
|139th
| <small>138th</small>
|139/101
| <small>138/101</small>
|552.876
| <small>540.376</small>
|-
|-
|39
! <small>38</small>
|140th
| <small>139th</small>
|140/101
| <small>139/101</small>
|565.286
| <small>552.876</small>
|-
|-
|40
! <small>39</small>
|141st
| <small>140th</small>
|141/101
| <small>140/101</small>
|577.608
| <small>565.286</small>
|-
|-
|41
! <small>40</small>
|142nd
| <small>141st</small>
|142/101
| <small>141/101</small>
|589.843
| <small>577.608</small>
|-
|-
|42
! <small>41</small>
|143rd
| <small>142nd</small>
|143/101
| <small>142/101</small>
|601.992
| <small>589.843</small>
|-
|-
|43
! <small>42</small>
|144th
| <small>143rd</small>
|144/101
| <small>143/101</small>
|614.056
| <small>601.992</small>
|-
|-
|44
! <small>43</small>
|145th
| <small>144th</small>
|145/101
| <small>144/101</small>
|626.037
| <small>614.056</small>
|-
|-
|45
! <small>44</small>
|146th
| <small>145th</small>
|146/101
| <small>145/101</small>
|637.936
| <small>626.037</small>
|-
|-
|46
! <small>45</small>
|147th
| <small>146th</small>
|147/101
| <small>146/101</small>
|649.753
| <small>637.936</small>
|-
|-
|47
! <small>46</small>
|148th
| <small>147th</small>
|148/101
| <small>147/101</small>
|661.490
| <small>649.753</small>
|-
|-
|48
! <small>47</small>
|149th
| <small>148th</small>
|149/101
| <small>148/101</small>
|673.148
| <small>661.490</small>
|-
|-
|49
! <small>48</small>
|150th
| <small>149th</small>
|150/101
| <small>149/101</small>
|684.729
| <small>673.148</small>
|-
|-
|50
! <small>49</small>
|151st
| <small>150th</small>
|151/101
| <small>150/101</small>
|696.232
| <small>684.729</small>
|-
|-
|51
! <small>50</small>
|152nd
| <small>151st</small>
|152/101
| <small>151/101</small>
|707.659
| <small>696.232</small>
|-
|-
|52
! <small>51</small>
|153rd
| <small>152nd</small>
|153/101
| <small>152/101</small>
|719.012
| <small>707.659</small>
|-
|-
|53
! <small>52</small>
|154th
| <small>153rd</small>
|154/101
| <small>153/101</small>
|730.290
| <small>719.012</small>
|-
|-
|54
! <small>53</small>
|155th
| <small>154th</small>
|155/101
| <small>154/101</small>
|741.496
| <small>730.290</small>
|-
|-
|55
! <small>54</small>
|156th
| <small>155th</small>
|156/101
| <small>155/101</small>
|752.629
| <small>741.496</small>
|-
|-
|56
! <small>55</small>
|157th
| <small>156th</small>
|157/101
| <small>156/101</small>
|763.691
| <small>752.629</small>
|-
|-
|57
! <small>56</small>
|158th
| <small>157th</small>
|158/101
| <small>157/101</small>
|774.683
| <small>763.691</small>
|-
|-
|58
! <small>57</small>
|159th
| <small>158th</small>
|159/101
| <small>158/101</small>
|785.606
| <small>774.683</small>
|-
|-
|59
! <small>58</small>
|160th
| <small>159th</small>
|160/101
| <small>159/101</small>
|796.460
| <small>785.606</small>
|-
|-
|60
! <small>59</small>
|161st
| <small>160th</small>
|161/101
| <small>160/101</small>
|807.246
| <small>796.460</small>
|-
|-
|61
! <small>60</small>
|162nd
| <small>161st</small>
|162/101
| <small>161/101</small>
|817.966
| <small>807.246</small>
|-
|-
|62
! <small>61</small>
|163rd
| <small>162nd</small>
|163/101
| <small>162/101</small>
|828.620
| <small>817.966</small>
|-
|-
|63
! <small>62</small>
|164th
| <small>163rd</small>
|164/101
| <small>163/101</small>
|839.209
| <small>828.620</small>
|-
|-
|64
! <small>63</small>
|165th
| <small>164th</small>
|165/101
| <small>164/101</small>
|849.733
| <small>839.209</small>
|-
|-
|65
! <small>64</small>
|166th
| <small>165th</small>
|166/101
| <small>165/101</small>
|860.194
| <small>849.733</small>
|-
|-
|66
! <small>65</small>
|167th
| <small>166th</small>
|167/101
| <small>166/101</small>
|870.591
| <small>860.194</small>
|-
|-
|67
! <small>66</small>
|168th
| <small>167th</small>
|168/101
| <small>167/101</small>
|880.927
| <small>870.591</small>
|-
|-
|68
! <small>67</small>
|169th
| <small>168th</small>
|169/101
| <small>168/101</small>
|891.202
| <small>880.927</small>
|-
|-
|69
! <small>68</small>
|170th
| <small>169th</small>
|170/101
| <small>169/101</small>
|901.415
| <small>891.202</small>
|-
|-
|70
! <small>69</small>
|171st
| <small>170th</small>
|171/101
| <small>170/101</small>
|911.569
| <small>901.415</small>
|-
|-
|71
! <small>70</small>
|172nd
| <small>171st</small>
|172/101
| <small>171/101</small>
|921.664
| <small>911.569</small>
|-
|-
|72
! <small>71</small>
|173rd
| <small>172nd</small>
|173/101
| <small>172/101</small>
|931.700
| <small>921.664</small>
|-
|-
|73
! <small>72</small>
|174th
| <small>173rd</small>
|174/101
| <small>173/101</small>
|941.678
| <small>931.700</small>
|-
|-
|74
! <small>73</small>
|175th
| <small>174th</small>
|175/101
| <small>174/101</small>
|951.600
| <small>941.678</small>
|-
|-
|75
! <small>74</small>
|176th
| <small>175th</small>
|176/101
| <small>175/101</small>
|961.464
| <small>951.600</small>
|-
|-
|76
! <small>75</small>
|177th
| <small>176th</small>
|177/101
| <small>176/101</small>
|971.273
| <small>961.464</small>
|-
|-
|77
! <small>76</small>
|178th
| <small>177th</small>
|178/101
| <small>177/101</small>
|981.026
| <small>971.273</small>
|-
|-
|78
! <small>77</small>
|179th
| <small>178th</small>
|179/101
| <small>178/101</small>
|990.725
| <small>981.026</small>
|-
|-
|79
! <small>78</small>
|180th
| <small>179th</small>
|180/101
| <small>179/101</small>
|1000.370
| <small>990.725</small>
|-
|-
|80
! <small>79</small>
|181st
| <small>180th</small>
|181/101
| <small>180/101</small>
|1009.961
| <small>1000.370</small>
|-
|-
|81
! <small>80</small>
|182nd
| <small>181st</small>
|182/101
| <small>181/101</small>
|1019.500
| <small>1009.961</small>
|-
|-
|82
! <small>81</small>
|183rd
| <small>182nd</small>
|183/101
| <small>182/101</small>
|1028.986
| <small>1019.500</small>
|-
|-
|83
! <small>82</small>
|184th
| <small>183rd</small>
|184/101
| <small>183/101</small>
|1038.421
| <small>1028.986</small>
|-
|-
|84
! <small>83</small>
|185th
| <small>184th</small>
|185/101
| <small>184/101</small>
|1047.804
| <small>1038.421</small>
|-
|-
|85
! <small>84</small>
|186th
| <small>185th</small>
|186/101
| <small>185/101</small>
|1057.137
| <small>1047.804</small>
|-
|-
|86
! <small>85</small>
|187th
| <small>186th</small>
|187/101
| <small>186/101</small>
|1066.420
| <small>1057.137</small>
|-
|-
|87
! <small>86</small>
|188th
| <small>187th</small>
|188/101
| <small>187/101</small>
|1075.653
| <small>1066.420</small>
|-
|-
|88
! <small>87</small>
|189th
| <small>188th</small>
|189/101
| <small>188/101</small>
|1084.837
| <small>1075.653</small>
|-
|-
|89
! <small>88</small>
|190th
| <small>189th</small>
|190/101
| <small>189/101</small>
|1093.973
| <small>1084.837</small>
|-
|-
|90
! <small>89</small>
|191st
| <small>190th</small>
|191/101
| <small>190/101</small>
|1103.061
| <small>1093.973</small>
|-
|-
|91
! <small>90</small>
|192nd
| <small>191st</small>
|192/101
| <small>191/101</small>
|1112.101
| <small>1103.061</small>
|-
|-
|92
! <small>91</small>
|193rd
| <small>192nd</small>
|193/101
| <small>192/101</small>
|1121.095
| <small>1112.101</small>
|-
|-
|93
! <small>92</small>
|194th
| <small>193rd</small>
|194/101
| <small>193/101</small>
|1130.042
| <small>1121.095</small>
|-
|-
|94
! <small>93</small>
|195th
| <small>194th</small>
|195/101
| <small>194/101</small>
|1138.943
| <small>1130.042</small>
|-
|-
|95
! <small>94</small>
|196th
| <small>195th</small>
|196/101
| <small>195/101</small>
|1147.798
| <small>1138.943</small>
|-
|-
|96
! <small>95</small>
|197th
| <small>196th</small>
|197/101
| <small>196/101</small>
|1156.608
| <small>1147.798</small>
|-
|-
|97
! <small>96</small>
|198th
| <small>197th</small>
|198/101
| <small>197/101</small>
|1165.374
| <small>1156.608</small>
|-
|-
|98
! <small>97</small>
|199th
| <small>198th</small>
|199/101
| <small>198/101</small>
|1174.096
| <small>1165.374</small>
|-
|-
|99
! <small>98</small>
|200th
| <small>199th</small>
|200/101
| <small>199/101</small>
|1182.774
| <small>1174.096</small>
|-
|-
|100
! <small>99</small>
|201st
| <small>200th</small>
|201/101
| <small>200/101</small>
|1191.408
| <small>1182.774</small>
|-
|-
|101
! <small>100</small>
|202nd
| <small>201st</small>
|202/101
| <small>201/101</small>
|1200.000
| <small>1191.408</small>
|-
! <small>101</small>
| <small>202nd</small>
| <small>202/101</small>
| <small>1200.000</small>
|}
|}


=== Subsets ===
== Scales ==
{{Idiosyncratic terms}}


==== Non-NEJI ====
=== Non-neji ===
Dante
Dante


114/101
101:114:120:152:189:202
 
120/101
 
152/101
 
189/101
 
202/101
 




Da Vinci
Da Vinci


113/101
101:113:126:151:178:202
 
126/101
 
151/101
 
178/101
 
202/101
 




Dawkins
Dawkins


118/101
101:118:135:152:185:202
 
135/101
 
152/101
 
185/101
 
202/101
 




Deepak
Deepak


126/101
101:126:135:152:160:202
 
135/101
 
152/101
 
160/101
 
202/101
 




Deja Vu
Deja Vu


121/101
101:121:151:162:182:202
 
151/101
 
162/101
 
182/101
 
202/101
 




Delgado
Delgado


107/101
101:107:126:152:177:202
 
126/101
 
152/101
 
177/101
 
202/101
 




Dolly
Dolly


127/101
101:127:134:152:177:202
 
134/101
 
152/101
 
177/101
 
202/101
 




Dylan
Dylan


135/101
101:135:151:161:180:202
 
151/101
 
161/101
 
180/101
 
202/101
 




Fergus
Fergus


121/101
101:121:135:140:151:175:181:202
 
135/101
 
140/101
 
151/101
 
175/101
 
181/101
 
202/101
 




Hansel
Hansel


113/101
101:113:126:135:151:169:189:202


126/101


135/101
=== Neji 5edo ===
 
151/101
 
169/101
 
189/101
 
202/101
 
 
==== NEJI 5EDO ====
Equipentatonic
Equipentatonic


116/101
101:116:133:153:176:202


133/101


153/101
=== Neji 6edo ===
 
176/101
 
202/101
 
 
==== NEJI 6EDO ====


Liquorice
Liquorice


113/101
101:113:127:143:160:180:202


127/101


143/101
=== Neji 12edo ===
 
160/101
 
180/101
 
202/101
 
 
==== NEJI 12EDO ====
Blues Aeolian Hexatonic
Blues Aeolian Hexatonic


120/101
101:120:135:143:151:160:202
 
135/101
 
143/101
 
151/101
 
160/101
 
202/101




Blues Aeolian Pentatonic I
Blues Aeolian Pentatonic I


120/101
101:120:135:151:160:202
 
135/101
 
151/101
 
160/101
 
202/101




Blues Aeolian Pentatonic II
Blues Aeolian Pentatonic II


120/101
101:120:151:160:180:202
 
151/101
 
160/101
 
180/101
 
202/101




Blues Bright Double Harmonic
Blues Bright Double Harmonic


107/101
101:107:127:135:151:160:180:191:202
 
127/101
 
135/101
 
151/101
 
160/101
 
180/101
 
191/101
 
202/101




Blues Dark Double Harmonic
Blues Dark Double Harmonic


113/101
101:113:120:135:143:151:160:191:202
 
120/101
 
135/101
 
143/101
 
151/101
 
160/101
 
191/101
 
202/101




Blues Dorian Hexatonic
Blues Dorian Hexatonic


120/101
101:120:135:151:170:180:202
 
135/101
 
151/101
 
170/101
 
180/101
 
202/101




Blues Dorian Pentatonic
Blues Dorian Pentatonic


120/101
101:120:151:170:180:202
 
151/101
 
170/101
 
180/101
 
202/101




Blues Dorian Septatonic
Blues Dorian Septatonic


120/101
101:120:135:143:151:170:180:202
 
135/101
 
143/101
 
151/101
 
170/101
 
180/101
 
202/101




Blues Harmonic Hexatonic
Blues Harmonic Hexatonic


113/101
101:113:120:135:151:191:202
 
120/101
 
135/101
 
151/101
 
191/101
 
202/101




Blues Harmonic Septatonic
Blues Harmonic Septatonic


120/101
101:120:135:143:151:160:191:202
 
135/101
 
143/101
 
151/101
 
160/101
 
191/101
 
202/101




Blues Leading
Blues Leading


120/101
101:120:135:143:151:180:191:202
 
135/101
 
143/101
 
151/101
 
180/101
 
191/101
 
202/101




Blues Minor
Blues Minor


120/101
101:120:135:143:151:180:202
 
135/101
 
143/101
 
151/101
 
180/101
 
202/101




Blues Minor Maj7
Blues Minor Maj7


120/101
101:120:135:143:151:191:202
 
135/101
 
143/101
 
151/101
 
191/101
 
202/101




Blues Pentachordal
Blues Pentachordal


113/101
101:113:120:135:143:151:202
 
120/101
 
135/101
 
143/101
 
151/101
 
202/101




Dominant Pentatonic
Dominant Pentatonic


113/101
101:113:127:151:180:202
 
127/101
 
151/101
 
180/101
 
202/101




Dorian
Dorian


113/101
101:113:120:135:151:170:180:202
 
120/101
 
135/101
 
151/101
 
170/101
 
180/101
 
202/101




Double Harmonic
Double Harmonic


107/101
1101:07:127:135:151:160:191:202
 
127/101
 
135/101
 
151/101
 
160/101
 
191/101
 
202/101




Hirajoshi
Hirajoshi


113/101
101:113:120:151:160:202
 
120/101
 
151/101
 
160/101
 
202/101




Ionian Pentatonic
Ionian Pentatonic


127/101
101:127:135:151:191:202
 
135/101
 
151/101
 
191/101
 
202/101




Javanese Pentachordal
Javanese Pentachordal


107/101
101:107:120:143:151:202
 
120/101
 
143/101
 
151/101
 
202/101




Kokin-Joshi
Kokin-Joshi


113/101
101:113:120:151:170:202
 
120/101
 
151/101
 
170/101
 
202/101




Locrian
Locrian


107/101
101:107:120:135:143:160:180:202
 
120/101
 
135/101
 
143/101
 
160/101
 
180/101
 
202/101




Lydian
Lydian


113/101
101:113:127:143:151:170:191:202
 
127/101
 
143/101
 
151/101
 
170/101
 
191/101
 
202/101




Major
Major


113/101
101:113:127:135:151:170:191:202
 
127/101
 
135/101
 
151/101
 
170/101
 
191/101
 
202/101




Major Pentatonic
Major Pentatonic


113/101
101:113:127:151:170:202
 
127/101
 
151/101
 
170/101
 
202/101




Minor
Minor


113/101
101:113:120:135:151:160:180:202
 
120/101
 
135/101
 
151/101
 
160/101
 
180/101
 
202/101




Minor Harmonic
Minor Harmonic


113/101
101:113:120:135:151:160:191:202
 
120/101
 
135/101
 
151/101
 
160/101
 
191/101
 
202/101




Minor Harmonic Pentatonic
Minor Harmonic Pentatonic


113/101
101:113:120:151:191:202
 
120/101
 
151/101
 
191/101
 
202/101




Minor Hexatonic
Minor Hexatonic


113/101
101:113:120:135:151:180:202
 
120/101
 
135/101
 
151/101
 
180/101
 
202/101




Minor Melodic
Minor Melodic


113/101
101:113:120:135:151:170:191:202
 
120/101
 
135/101
 
151/101
 
170/101
 
191/101
 
202/101




Minor Pentatonic
Minor Pentatonic


120/101
101:120:135:151:180:202
 
135/101
 
151/101
 
180/101
 
202/101




Mixolydian
Mixolydian


113/101
101:113:127:135:151:170:180:202
 
127/101
 
135/101
 
151/101
 
170/101
 
180/101
 
202/101




Mixolydian Harmonic
Mixolydian Harmonic


127/101
101:127:135:151:160:180:202
 
135/101
 
151/101
 
160/101
 
180/101
 
202/101




Mixolydian Pentatonic
Mixolydian Pentatonic


127/101
101:127:135:151:180:202
 
135/101
 
151/101
 
180/101
 
202/101




Phrygian
Phrygian


107/101
101:107:120:135:151:160:180:202
 
120/101
 
135/101
 
151/101
 
160/101
 
180/101
 
202/101




Phrygian Dominant
Phrygian Dominant


107/101
101:107:127:135:151:160:180:202
 
127/101
 
135/101
 
151/101
 
160/101
 
180/101
 
202/101




Phrygian Dominant Hexatonic
Phrygian Dominant Hexatonic


107/101
101:107:127:135:151:180:202
 
127/101
 
135/101
 
151/101
 
180/101
 
202/101




Phrygian Dominant Pentatonic
Phrygian Dominant Pentatonic


127/101
101:127:135:151:160:202
 
135/101
 
151/101
 
160/101
 
202/101




Phrygian Pentatonic
Phrygian Pentatonic


107/101
101:107:120:151:160:202
 
120/101
 
151/101
 
160/101
 
202/101




Picardy Hexatonic
Picardy Hexatonic


113/101
101:113:127:135:151:160:202
 
127/101
 
135/101
 
151/101
 
160/101
 
202/101




Picardy Pentatonic
Picardy Pentatonic


113/101
101:113:127:151:160:202
 
127/101
 
151/101
 
160/101
 
202/101




Liquorice (Whole Tone)
Liquorice (Whole Tone)


113/101
101:113:127:143:160:180:202
 
127/101
 
143/101
 
160/101
 
180/101
 
202/101
 
==== NEJI 14EDO ====
 
==== NEJI 19EDO ====
 
==== NEJI 22EDO ====
 
==== NEJI 24EDO ====
 
==== NEJI 25EDO ====


==== NEJI 27EDO ====
=== Explanation of idiosyncratic names ===
[[Budjarn Lambeth]] named 101afdo the '''Dalmatian scale''' {{idiosyncratic}} but no one else has been recorded using that name. That name is a reference to the animated TV series {{w|101 Dalmatian Street|''101 Dalmatian Street'' (2019)}}. He named some of its subsets after characters from that series based on the 'mood' evoked by the scales resembling those characters' personalities.


==== NEJI 34EDO ====
{{Todo|cleanup|comment=write these scales more compactly. }}
[[Category:Neji]]
[[Category:Neji]]
[[Category:Primodality]]
[[Category:Primodality]]
[[Category:AFDO]]
[[Category:Harmonic series]]
[[Category:Harmonic series]]
[[Category:Just intonation scales]]
[[Category:Just intonation scales]]
[[Category:Pages with mostly numerical content]]