User:Ganaram inukshuk/Methodologies: Difference between revisions
→My approach to diatonic descendant mosses: Chroma/diesis rules generalized to any mos; 3rd descendants are wip |
|||
(One intermediate revision by the same user not shown) | |||
Line 261: | Line 261: | ||
For a mos xL ys, its two child mosses can be described using replacement rulesets: L->Ls and s->s, producing xL (x+y)s, and L->sL and s->s, producing (x+y)L xs. These two rulesets can be applied to the two child mosses again to produce further descendants. However, the resulting descendant mosses are denoted using L's and s's, whose relationship to the parent mos's step sizes may be unclear. This section describes how descendant mosses' step sizes relate back to the parent. | For a mos xL ys, its two child mosses can be described using replacement rulesets: L->Ls and s->s, producing xL (x+y)s, and L->sL and s->s, producing (x+y)L xs. These two rulesets can be applied to the two child mosses again to produce further descendants. However, the resulting descendant mosses are denoted using L's and s's, whose relationship to the parent mos's step sizes may be unclear. This section describes how descendant mosses' step sizes relate back to the parent. | ||
=== | === Replacement rules of descendants === | ||
Since replacement rules apply to any mos, it | Since replacement rules apply to any mos, it's easier to consider applying these rules to the mos 1L 1s, a single large and small step. | ||
* L->Ls, s->s (ruleset 1); apply to a mos in its brightest mode to produce a child mos in its brightest mode | * L->Ls, s->s (ruleset 1); apply to a mos in its brightest mode to produce a child mos in its brightest mode | ||
* L->sL, s->L (ruleset 2); apply to a mos in its brightest mode to produce a child mos in its darkest mode | * L->sL, s->L (ruleset 2); apply to a mos in its brightest mode to produce a child mos in its darkest mode | ||
Applying these rules to the mos pattern produces its children, and applying them repeatedly produces further descendants; shown below is three applications for three generations of descendants. | |||
{| class="wikitable" | |||
|+ | |||
!Mos | |||
!Step pattern | |||
!Mos | |||
!Step pattern | |||
!Mos | |||
!Step pattern | |||
!Mos | |||
!Step pattern | |||
|- | |||
| rowspan="8" |1L 1s | |||
| rowspan="8" |L s | |||
| rowspan="4" |1L 2s | |||
| rowspan="4" |Ls s | |||
| rowspan="2" |1L 3s | |||
| rowspan="2" |Lss s | |||
|1L 4s | |||
|Lss s | |||
|- | |||
|4L 1s | |||
|sLL L | |||
|- | |||
| rowspan="2" |3L 1s | |||
| rowspan="2" |sLL L | |||
|3L 4s | |||
|ssLsL sL | |||
|- | |||
|4L 3s | |||
|LLsLs Ls | |||
|- | |||
| rowspan="4" |2L 1s | |||
| rowspan="4" |sL L | |||
| rowspan="2" |2L 3s | |||
| rowspan="2" |ssL sL | |||
|2L 5s | |||
|sssL ssL | |||
|- | |||
|5L 2s | |||
|LLLs LLs | |||
|- | |||
| rowspan="2" |3L 2s | |||
| rowspan="2" |LLs Ls | |||
|3L 5s | |||
|LsLss Lss | |||
|- | |||
|5L 3s | |||
|sLsLL sLL | |||
|} | |||
Adding a separator shows what happens to a single L and s, effectively creates production rules for producing all 14 possible mos descendants. | |||
{| class="wikitable" | |||
! colspan="2" |Parent mos | |||
! colspan="2" |1st descendants | |||
! colspan="2" |2nd descendants | |||
! colspan="2" |3rd descendants | |||
|- | |||
!Mos | |||
!Production rules | |||
!Mos | |||
!Production rules | |||
!Mos | |||
!Production rules | |||
!Mos | |||
!Production rules | |||
|- | |||
| rowspan="8" |xL ys | |||
| rowspan="8" |none | |||
| rowspan="4" |xL (x+y)s | |||
| rowspan="4" |L->Ls | |||
s->s | |||
| rowspan="2" |xL (2x+y)s | |||
| rowspan="2" |L->Lss | |||
s->s | |||
|xL (3x+y)s | |||
|L->Lss | |||
s->s | |||
|- | |||
|(3x+y)L xs | |||
|L->sLL | |||
s->L | |||
|- | |||
| rowspan="2" |(2x+y)L xs | |||
| rowspan="2" |L->sLL | |||
s->L | |||
|(2x+y)L (3x+y)s | |||
|L->ssLsL | |||
s->sL | |||
|- | |||
|(3x+y)L (2x+y)s | |||
|L->LLsLs | |||
s->Ls | |||
|- | |||
| rowspan="4" |(x+y)L xs | |||
| rowspan="4" |L->sL | |||
s->L | |||
| rowspan="2" |(x+y)L (2x+y)s | |||
| rowspan="2" |L->ssL | |||
s->sL | |||
|(x+y)L (3x+2y)s | |||
|L->sssL | |||
s->ssL | |||
|- | |||
|(3x+2y)L (x+y)s | |||
|L->LLLs | |||
s->LLs | |||
|- | |||
| rowspan="2" |(2x+y)L (x+y)s | |||
| rowspan="2" |L->LLs | |||
s->Ls | |||
|(2x+y)L (3x+2y)s | |||
|L->LsLss | |||
s->Lss | |||
|- | |||
|(3x+2y)L (2x+y)s | |||
|L->sLsLL | |||
s->sLL | |||
|} | |||
==== 1st descendants ==== | |||
Since a chroma is the difference between a large and small step, 1st descendants have the large step of the parent break into a chroma and small step. Recalling that this small step refers to the parent's rather than the descendant's, and that whichever is larger depends on how big L and s are, the two rulesets for 1st descendants can be condensed into one ruleset. Using a rectangular horogram helps to illustrate what happens. | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
!Mos | !Mos | ||
!Relation | |||
! colspan="3" |Step pattern | ! colspan="3" |Step pattern | ||
(1L 1s) | |||
! colspan="3" |Step pattern with chromas | ! colspan="3" |Step pattern with chromas | ||
! | !Final ruleset | ||
|- | |- | ||
|xL ys | |||
|Parent | |Parent | ||
| colspan="2" |L | | colspan="2" |L | ||
|s | |s | ||
| colspan="2" |L | | colspan="2" |L | ||
|s | |s | ||
| | | | ||
|- | |- | ||
|xL (x+y)s | |||
|Child 1 | |Child 1 | ||
|L | |L | ||
|s | |s | ||
|s | |s | ||
| rowspan="2" |c | | rowspan="2" |c | ||
| rowspan="2" |s | | rowspan="2" |s | ||
Line 294: | Line 414: | ||
| rowspan="2" |L->cs, s->s | | rowspan="2" |L->cs, s->s | ||
|- | |- | ||
|(x+y)L xs | |||
|Child 2 | |Child 2 | ||
|s | |s | ||
|L | |L | ||
|L | |L | ||
|} | |} | ||
=== 2nd descendants === | ==== 2nd descendants ==== | ||
To get replacement rules for 2nd descendants, we can extend the horograms produced before. However, this results into two horograms since the step counts will be different. To deduce what these steps are in relation to the parent, we introduce a second-order chroma: a diesis, defined as d = | L - 2s |. For ruleset 1+1 and 1+2, a large step breaks down into two small steps and a diesis. Whichever is larger depends on the step ratio of the parent, condensing the rulesets 1+1 and 1+2 into one ruleset. | To get replacement rules for 2nd descendants, we can extend the horograms produced before. However, this results into two horograms since the step counts will be different. To deduce what these steps are in relation to the parent, we introduce a second-order chroma: a diesis, defined as d = | L - 2s |. For ruleset 1+1 and 1+2, a large step breaks down into two small steps and a diesis. Whichever is larger depends on the step ratio of the parent, condensing the rulesets 1+1 and 1+2 into one ruleset. | ||
{| class="wikitable" | {| class="wikitable" | ||
! rowspan="2" |Mos | ! rowspan="2" |Mos | ||
! colspan=" | ! rowspan="2" |Relation | ||
! | ! colspan="8" |Step pattern | ||
! rowspan="2" |Final rulesets | |||
|- | |- | ||
! colspan="4" | | ! colspan="4" |L's and s's | ||
! colspan="4" |s's and c's | |||
! colspan="4" | | |||
|- | |- | ||
|xL ys | |||
|Parent | |Parent | ||
| colspan="3" |L | | colspan="3" |L | ||
|s | |s | ||
| colspan="3" |L | | colspan="3" |L | ||
|s | |s | ||
| | | | ||
|- | |- | ||
|xL (x+y)s | |||
|Child 1 | |Child 1 | ||
| colspan="2" |L | | colspan="2" |L | ||
|s | |s | ||
|s | |s | ||
| colspan="2" |c | | colspan="2" |c | ||
|s | |s | ||
Line 334: | Line 450: | ||
| | | | ||
|- | |- | ||
| | |xL (2x+y)s | ||
|Grandchild 11 | |||
|L | |L | ||
|s | |s | ||
|s | |s | ||
|s | |s | ||
| rowspan="2" |c | | rowspan="2" |c | ||
| rowspan="2" |s | | rowspan="2" |s | ||
Line 347: | Line 462: | ||
| rowspan="2" |L->css, s->s | | rowspan="2" |L->css, s->s | ||
|- | |- | ||
|(2x+y)L xs | |||
|Grandchild 12 | |||
|s | |s | ||
|L | |L | ||
|L | |L | ||
|L | |L | ||
|} | |} | ||
{| class="wikitable" | {| class="wikitable" | ||
! rowspan="2" |Mos | ! rowspan="2" |Mos | ||
! colspan=" | ! rowspan="2" |Relation | ||
! | ! colspan="10" |Step pattern | ||
! rowspan="2" |Final rulesets | |||
|- | |- | ||
! colspan="5" | | ! colspan="5" |L's and s's | ||
! colspan="5" |c's and d's | |||
! colspan="5" | | |||
|- | |- | ||
|xL ys | |||
|Parent | |Parent | ||
| colspan="3" |L | | colspan="3" |L | ||
| colspan="2" |s | | colspan="2" |s | ||
| colspan="3" |L | | colspan="3" |L | ||
| colspan="2" |s | | colspan="2" |s | ||
| | | | ||
|- | |- | ||
|(x+y)L xs | |||
|Child 2 | |Child 2 | ||
|s | |s | ||
| colspan="2" |L | | colspan="2" |L | ||
| colspan="2" |L | | colspan="2" |L | ||
|c | |c | ||
| colspan="2" |s | | colspan="2" |s | ||
Line 386: | Line 497: | ||
| | | | ||
|- | |- | ||
| | |(x+y)L (2x+y)s | ||
|Grandchild 21 | |||
|s | |s | ||
|s | |s | ||
Line 392: | Line 504: | ||
|s | |s | ||
|L | |L | ||
| rowspan="2" |c | | rowspan="2" |c | ||
| rowspan="2" |c | | rowspan="2" |c | ||
Line 401: | Line 511: | ||
| rowspan="2" |L->ccd, s->cd | | rowspan="2" |L->ccd, s->cd | ||
|- | |- | ||
|(2x+y)L (x+y)s | |||
|Grandchild 22 | |||
|L | |||
|L | |||
|s | |||
|L | |L | ||
|s | |||
|} | |||
==== 3rd descendants (wip) ==== | |||
To get replacement rules for 3rd descendants, the previous horograms can be extended as before, as well as adding a third-order chroma: a kleisma (or, for this page, an epsilon), defined as e = | L - 3s |. | |||
{| class="wikitable" | |||
! rowspan="2" |Mos | |||
! rowspan="2" |Relation | |||
! colspan="8" |Step pattern | |||
! rowspan="2" |Final rulesets | |||
|- | |||
! colspan="4" |L's and s's | |||
! colspan="4" |s's and c's | |||
|- | |||
|xL ys | |||
|Parent | |||
| colspan="3" |L | |||
|s | |||
| colspan="3" |L | |||
|s | |||
| | |||
|- | |||
|xL (x+y)s | |||
|Child 1 | |||
| colspan="2" |L | |||
|s | |||
|s | |||
| colspan="2" |c | |||
|s | |||
|s | |||
| | |||
|- | |||
|xL (2x+y)s | |||
|Grandchild 11 | |||
|L | |L | ||
|s | |s | ||
|s | |||
|s | |||
|c | |||
|s | |||
|s | |||
|s | |||
| | |||
|} | |||
{| class="wikitable" | |||
! rowspan="2" |Mos | |||
! rowspan="2" |Relation | |||
! colspan="8" |Step pattern | |||
! rowspan="2" |Final rulesets | |||
|- | |||
! colspan="4" |L's and s's | |||
! colspan="4" |s's and c's | |||
|- | |||
|xL ys | |||
|Parent | |||
| colspan="3" |L | |||
|s | |||
| colspan="3" |L | |||
|s | |||
| | |||
|- | |||
|xL (x+y)s | |||
|Child 1 | |||
| colspan="2" |L | |||
|s | |||
|s | |||
| colspan="2" |c | |||
|s | |||
|s | |||
| | |||
|- | |||
|(2x+y)L xs | |||
|Grandchild 12 | |||
|s | |||
|L | |||
|L | |||
|L | |L | ||
|c | |||
|s | |s | ||
| | |s | ||
| | |s | ||
| | |||
|} | |} | ||
=== | {| class="wikitable" | ||
! rowspan="2" |Mos | |||
! rowspan="2" |Relation | |||
! colspan="10" |Step pattern | |||
! rowspan="2" |Final rulesets | |||
|- | |||
! colspan="5" |L's and s's | |||
! colspan="5" |c's and d's | |||
|- | |||
|xL ys | |||
|Parent | |||
| colspan="3" |L | |||
| colspan="2" |s | |||
| colspan="3" |L | |||
| colspan="2" |s | |||
| | |||
|- | |||
|(x+y)L xs | |||
|Child 2 | |||
|s | |||
| colspan="2" |L | |||
| colspan="2" |L | |||
|c | |||
| colspan="2" |s | |||
| colspan="2" |s | |||
| | |||
|- | |||
|(x+y)L (2x+y)s | |||
|Grandchild 21 | |||
|s | |||
|s | |||
|L | |||
|s | |||
|L | |||
|c | |||
|c | |||
|d | |||
|c | |||
|d | |||
| | |||
|} | |||
{| class="wikitable" | |||
! rowspan="2" |Mos | |||
! rowspan="2" |Relation | |||
! colspan="10" |Step pattern | |||
! rowspan="2" |Final rulesets | |||
|- | |||
! colspan="5" |L's and s's | |||
! colspan="5" |c's and d's | |||
|- | |||
|xL ys | |||
|Parent | |||
| colspan="3" |L | |||
| colspan="2" |s | |||
| colspan="3" |L | |||
| colspan="2" |s | |||
| | |||
|- | |||
|(x+y)L xs | |||
|Child 2 | |||
|s | |||
| colspan="2" |L | |||
| colspan="2" |L | |||
|c | |||
| colspan="2" |s | |||
| colspan="2" |s | |||
| | |||
|- | |||
|(2x+y)L (x+y)s | |||
|Grandchild 22 | |||
|L | |||
|L | |||
|s | |||
|L | |||
|s | |||
|c | |||
|c | |||
|d | |||
|c | |||
|d | |||
| | |||
|} | |||
=== Examples with 5L 2s === | === Examples with 5L 2s === |