8edo: Difference between revisions
Wikispaces>hstraub **Imported revision 21204965 - Original comment: ** |
→Octave shrinking: Temporary improvement until the new standard is rolled out |
||
(156 intermediate revisions by 42 users not shown) | |||
Line 1: | Line 1: | ||
{{interwiki | |||
| de = 8edo | |||
| en = 8edo | |||
| es = | |||
| ja = 8平均律 | |||
}} | |||
{{Infobox ET}} | |||
{{ED intro}} | |||
== Theory == | |||
[[File:8edo scale.mp3|thumb|A chromatic 8edo scale on C.]] | |||
[[ | === Approximation to JI === | ||
[[ | 8edo forms an odd and even pitch set of two diminished seventh chords, which when used in combination yield dissonance. The system has been described as a "barbaric" harmonic system, containing no good approximation of harmonics 3, 5, 7, 11, 13, and 17; even so, it does a good job representing the [[just intonation subgroup]]s 2.11/3.13/5, with good intervals of [[13/10]] and an excellent version of [[11/6]]. Stacking the 450-cent interval can result in some semi-consonant chords such as 0-3-6 degrees, although these still are quite dissonant compared to standard root-3rd-P5 triads, which are unavailable in 8edo. | ||
< | |||
< | Another way of looking at 8edo is to treat a chord of 0-1-2-3-4 degrees (0-150-300-450-600 cents) as approximating harmonics 10:11:12:13:14 (~0-165-316-454-583 cents), which is not too implausible if you can buy that 12edo is a 5-limit temperament. This interpretation would imply that 121/120, 144/143, 169/168, and hence also 36/35 and 66/65, are tempered out. | ||
& | === Relationship with the father comma === | ||
When 8edo is treated as a very inaccurate 5-limit system, it ends up tempering out the [[Father]] comma, [[16/15]]. In fact, it is the largest edo that tempers this comma. What this means is that intervals 16/15 apart in 8edo map to the same note, such as [[4/3]] being mapped to the same note as [[5/4]]. | |||
Some other odd equivalencies include: | |||
'''0-2-5''': which can be seen as a minor triad (10:12:15), a sus2 triad (9:8:12), or a major triad in first inversion (5:6:8). | |||
'''0-3-5''': which can be seen as a major triad (4:5:6), a sus4 triad (6:8:9), or a minor chord in second inversion (15:20:24). | |||
=== Odd harmonics === | |||
{{Harmonics in equal|8|intervals=odd}} | |||
=== Octave shrinking === | |||
8edo's approximation of [[JI]] can be improved via [[octave shrinking]]. Compressing 8edo's octave from 1200 [[cent]]s down to 1187 cents gives the tuning called [[29ed12]]. | |||
Of all prime [[harmonic]]s up to 31, pure-octave 8edo only manages to approximate 2/1 and 19/1 within 15 [[cents]], completely missing all the others. | |||
By contrast, 29ed12 approximates 2/1, 11/1, 13/1, 17/1 and 31/1 all within 15 cents. | |||
Of all integer harmonics up to 30, pure-octave 8edo approximates the following within 20 cents: | |||
* 2, 4, 8, 16, 19, 27. | |||
Of all integer harmonics up to 30, 29ed12 approximates the following within 20 cents: | |||
* 2, 6, 11, 12, 13, 17, 20, 22, 25, 26. | |||
This provides 29ed12 with a comparatively larger, more diverse palette of [[consonance]]s than pure-octaves 8edo. | |||
The nearest [[zeta peak index]] tunings to 8edo don't have an interval within 20 cents of [[2/1]], making them unrecognisable as stretched or compressed 8edo but instead more like entirely new scales in their own right. | |||
=== Subsets and supersets === | |||
8edo contains [[2edo]] and [[4edo]] as subsets. Among its supersets are [[16edo]], [[24edo]], [[32edo]], …. | |||
== Intervals == | |||
{| class="wikitable" | |||
|- | |||
! rowspan="2" | Steps | |||
! rowspan="2" | Cents | |||
! colspan="3" | JI approximation | |||
!Other | |||
|- | |||
! 2.11/3.13/5.19* | |||
! 2.5/3.11/3.13/5* | |||
! 10:11:12:13:14* | |||
!Patent val ⟨8 13 19] | |||
|- | |||
| 0 | |||
| 0 | |||
| 1/1 | |||
| 1/1 | |||
| 1/1 | |||
|1/1, 16/15 | |||
|- | |||
| 1 | |||
| 150 | |||
| 12/11 | |||
| 12/11 | |||
| 12/11, 11/10 | |||
|10/9, 25/24 | |||
|- | |||
| 2 | |||
| 300 | |||
| 19/16 | |||
| 6/5 | |||
| 6/5 | |||
|6/5, 9/8 | |||
|- | |||
| 3 | |||
| 450 | |||
| 13/10 | |||
| 13/10 | |||
| 13/10 | |||
|4/3, 5/4 | |||
|- | |||
| 4 | |||
| 600 | |||
| | |||
| | |||
| 7/5, 10/7 | |||
|27/20, 25/18, 36/25 | |||
|- | |||
| 5 | |||
| 750 | |||
| 20/13 | |||
| 20/13 | |||
| 20/13 | |||
|3/2, 8/5 | |||
|- | |||
| 6 | |||
| 900 | |||
| 32/19 | |||
| 5/3 | |||
| 5/3 | |||
|5/3, 16/9 | |||
|- | |||
| 7 | |||
| 1050 | |||
| 11/6 | |||
| 11/6 | |||
| 20/11, 11/6 | |||
|9/5, 48/50 | |||
|- | |||
| 8 | |||
| 1200 | |||
| 2/1 | |||
| 2/1 | |||
| 2/1 | |||
|2/1, 15/8 | |||
|} | |||
<nowiki />* Allows [[inversion]] by 2/1; other interpretations also possible | |||
== Notation == | |||
=== Ups and downs notation === | |||
8edo can be notated as a subset of 24edo, using [[Ups and downs notation|ups and downs]]. It can also be notated as a subset of 16edo, but this is a less intuitive notation. | |||
{| class="wikitable center-all" | |||
|- | |||
! Edostep | |||
! [[Cent]]s | |||
! colspan="2" | 24edo subset notation<br />([[Enharmonic unisons in ups and downs notation|EUs:]] vvA1 and d2) | |||
! colspan="2" | 16edo subset notation<br />(major narrower than minor) | |||
! colspan="2" | 16edo subset notation<br />(major wider than minor) | |||
! [[3L 2s]] notation<br />({{nowrap|J {{=}} 1/1}}) | |||
! Audio | |||
|- | |||
| 0 | |||
| 0¢ | |||
| P1 | |||
| D | |||
| P1 | |||
| D | |||
| P1 | |||
| D | |||
| J | |||
| [[File:0-0 unison.mp3|frameless]] | |||
|- | |||
| 1 | |||
| 150 | |||
| ~2 | |||
| vE | |||
| M2 | |||
| E | |||
| m2 | |||
| E | |||
| K | |||
| [[File:0-150 (8-EDO).mp3|frameless]] | |||
|- | |||
| 2 | |||
| 300 | |||
| m3 | |||
| F | |||
| M3 | |||
| F# | |||
| m3 | |||
| Fb | |||
| K#, Lb | |||
| [[File:0-300 (12-EDO).mp3|frameless]] | |||
|- | |||
| 3 | |||
| 450 | |||
| ^M3 / v4 | |||
| ^F# / vG | |||
| d3 / A4 | |||
| Fb / G# | |||
| A3, D4 | |||
| F#, Gb | |||
| L | |||
| [[File:0-450 (8-EDO).mp3|frameless]] | |||
|- | |||
| 4 | |||
| 600 | |||
| A4, d5 | |||
| G#, Ab | |||
| d4, A5 | |||
| Gb, A# | |||
| A4, D5 | |||
| G#, Ab | |||
| M | |||
| [[File:0-600 (12-EDO).mp3|frameless]] | |||
|- | |||
| 5 | |||
| 750 | |||
| ^5, vm6 | |||
| ^A, vBb | |||
| d5, A6 | |||
| Ab, B# | |||
| A5, d6 | |||
| A#, Bb | |||
| M#, Nb | |||
| [[File:0-750 (8-EDO).mp3|frameless]] | |||
|- | |||
| 6 | |||
| 900 | |||
| M6 | |||
| B | |||
| m6 | |||
| Bb | |||
| M6 | |||
| B# | |||
| N | |||
| [[File:0-900 (12-EDO).mp3|frameless]] | |||
|- | |||
| 7 | |||
| 1050 | |||
| ~7 | |||
| ^C | |||
| m7 | |||
| C | |||
| M7 | |||
| C | |||
| N#, Jb | |||
| [[File:0-1050 (8-EDO).mp3|frameless]] | |||
|- | |||
| 8 | |||
| 1200 | |||
| P8 | |||
| D | |||
| P8 | |||
| D | |||
| P8 | |||
| D | |||
| J | |||
| [[File:0-1200 octave.mp3|frameless]] | |||
|} | |||
This is a heptatonic notation generated by 5ths (5th meaning 3/2). Alternative notations include pentatonic 5th-generated, octatonic, and heptatonic 2nd-generated. | |||
'''<u>Pentatonic 5th-generated</u>: D * E G * A C * D''' (generator = 5\8 = perfect 5thoid) | |||
D - D#/Eb - E - G - G#/Ab - A - C - C#/Db - D | |||
P1 - A1/ms3 - Ms3 - P4d - A4d/d5d - P5d - ms7 - Ms7/d8d - P8d (s = sub-, d = -oid, see [[5edo#Alternative notations|5edo]] notation) | |||
pentatonic genchain of 5ths: ...Cb - Gb - Db - Ab - Eb - C - G - D - A - E - C# - G# - D# - A# - E#... | |||
pentatonic genchain of 5ths: ...d8d - d5d - ms3 - ms7 - P4d - P1 - P5d - Ms3 - Ms7 - A4d - A1... (s = sub-, d = -oid) | |||
[[Enharmonic unison]]: ds3 | |||
'''<u>Octatonic:</u>''' '''A B C D E F G H A''' (every interval is a generator) | |||
P1 - P2 - P3 - P4 - P5 - P6 - P7 - P8 - P9 | |||
Enharmonic unison: none | |||
'''<u>Heptatonic 2nd-generated</u>: D E F G * A B C D''' (generator = 1\8 = perfect 2nd = 150¢) | |||
D - E - F - G - G#/Ab - A -B - C - D | |||
P1 - P2 - m3 - M3/m4 - M4/m5 - M5/m6 - M6 - P7 - P8 | |||
genchain of 2nds: ...D# - E# - F# - G# - A - B - C - D - E - F - G - Ab - Bb - Cb - Db... | |||
genchain of 2nds: ...A1 - A2 - M3 - M4 - M5 - M6 - P7 - P1 - P2 - m3 - m4 - m5 - m6 - d7 - d8... | |||
Enharmonic unison: d2 | |||
===Sagittal notation=== | |||
This notation is a subset of the notations for EDOs [[24edo#Sagittal notation|24]], [[48edo#Sagittal notation|48]], and [[72edo#Sagittal notation|72]]. | |||
====Evo flavor==== | |||
<imagemap> | |||
File:8-EDO_Evo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 392 0 552 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 392 106 [[24-EDO#Sagittal_notation | 24-EDO notation]] | |||
default [[File:8-EDO_Evo_Sagittal.svg]] | |||
</imagemap> | |||
====Revo flavor==== | |||
<imagemap> | |||
File:8-EDO_Revo_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 400 0 560 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 400 106 [[24-EDO#Sagittal_notation | 24-EDO notation]] | |||
default [[File:8-EDO_Revo_Sagittal.svg]] | |||
</imagemap> | |||
====Evo-SZ flavor==== | |||
<imagemap> | |||
File:8-EDO_Evo-SZ_Sagittal.svg | |||
desc none | |||
rect 80 0 300 50 [[Sagittal_notation]] | |||
rect 376 0 536 80 [https://sagittal.org#periodic-table Periodic table of EDOs with sagittal notation] | |||
rect 20 80 376 106 [[24-EDO#Sagittal_notation | 24-EDO notation]] | |||
default [[File:8-EDO_Evo-SZ_Sagittal.svg]] | |||
</imagemap> | |||
Because it contains no Sagittal symbols, this Evo-SZ Sagittal notation is also a Stein-Zimmerman notation. | |||
== Chord names == | |||
[[Ups and downs notation #Chords and Chord Progressions|Ups and downs]] can name any 8edo chord. Alterations are always enclosed in parentheses, additions never are. An up, down or mid immediately after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). | |||
8edo chords are very ambiguous, with many chord homonyms. Even the major and minor triads are [[Chord homonym|homonyms]]. Chord components usually default to M2, M3, P4, P5, M6, m7, M9, P11 and M13. Thus D7 has a M3, P5 and m7. 8-edo chord names using 24edo subset names are greatly simplified by using different defaults: instead of the conventional M2, M3, P4, P5, M6, m7, M9, P11 and M13, we have ~2, ^M3, v4, ^5, M6, ~7, ~9, v11 and M13. Thus D7 becomes ^M3, ^5 and ~7. | |||
{| class="wikitable" | |||
|- | |||
! Chord edosteps | |||
! Chord notes | |||
! Full name | |||
! Abbreviated name | |||
! Homonyms | |||
|- | |||
| 0 – 3 – 5 | |||
| D ^F♯ ^A | |||
| D^(^5) | |||
| D | |||
| ^F♯m or vGm | |||
|- | |||
| 0 – 2 – 5 | |||
| D F ^A | |||
| Dm(^5) | |||
| Dm | |||
| ^A or vB♭ | |||
|- | |||
| 0 – 3 – 5 – 7 | |||
| D ^F♯ ^A ^C | |||
| D^7(^5) | |||
| D7 | |||
| ^F♯m♯11 or vGm♯11 | |||
|- | |||
| 0 – 3 – 5 – 6 | |||
| D ^F♯ ^A B | |||
| D6(^3,^5) | |||
| D6 | |||
| Bm7 and vG,♯9 | |||
|- | |||
| 0 – 2 – 5 – 7 | |||
| D F ^A ^C | |||
| Dm,~7(^5) | |||
| Dm7 | |||
| F6 and vB♭,♯9 | |||
|- | |||
| 0 – 2 – 5 – 6 | |||
| D F ^A B | |||
| Dm6(^5) | |||
| Dm6 | |||
| Bm7(♭5) | |||
|- | |||
| 0 – 2 – 4 – 7 | |||
| D F A♭ ^C | |||
| Ddim,~7 | |||
| Dm7(♭5) | |||
| Fm6 | |||
|} | |||
== Approximation to JI == | |||
[[File:8ed2-001.svg]] | |||
== Regular temperament properties == | |||
=== Uniform maps === | |||
{{Uniform map|edo=8}} | |||
=== Commas === | |||
8et [[tempering out|tempers out]] the following [[comma]]s. This assumes [[val]] {{val| 8 13 19 22 28 30 }}. | |||
{| class="commatable wikitable center-all left-3 right-4 left-6" | |||
! [[Harmonic limit|Prime<br />limit]] | |||
! [[Ratio]]<ref>Ratios longer than 10 digits are presented by placeholders with informative hints</ref> | |||
! [[Monzo]] | |||
! [[Cent]]s | |||
! [[Color name]] | |||
! Name(s) | |||
|- | |||
| 3 | |||
| [[8192/6561]] | |||
| {{monzo| 13 -8 }} | |||
| 384.35 | |||
| sawa 4th | |||
| Pythagorean diminished fourth | |||
|- | |||
| 5 | |||
| [[16/15]] | |||
| {{monzo| 4 -1 -1 }} | |||
| 111.73 | |||
| gu 2nd | |||
| Father comma, classic limma | |||
|- | |||
| 5 | |||
| [[648/625]] | |||
| {{monzo| 3 4 -4 }} | |||
| 62.57 | |||
| Quadgu | |||
| Diminished comma, major diesis | |||
|- | |||
| 5 | |||
| [[250/243]] | |||
| {{monzo| 1 -5 3 }} | |||
| 49.17 | |||
| Triyo | |||
| Porcupine comma, maximal diesis | |||
|- | |||
| 5 | |||
| [[78732/78125]] | |||
| {{monzo| 2 9 -7 }} | |||
| 13.40 | |||
| Sepgu | |||
| Sensipent comma, medium semicomma | |||
|- | |||
| 7 | |||
| [[64/63]] | |||
| {{monzo| 6 -2 0 -1 }} | |||
| 27.26 | |||
| Ru | |||
| Septimal comma, Archytas' comma, Leipziger Komma | |||
|- | |||
| 7 | |||
| [[875/864]] | |||
| {{monzo| -5 -3 3 1 }} | |||
| 21.90 | |||
| Zotriyo | |||
| Keema | |||
|- | |||
| 7 | |||
| <abbr title="321489/320000">(12 digits)</abbr> | |||
| {{monzo| -9 8 -4 2 }} | |||
| 8.04 | |||
| Labizogugu | |||
| [[Varunisma]] | |||
|- | |||
| 7 | |||
| [[6144/6125]] | |||
| {{monzo| 11 1 -3 -2 }} | |||
| 5.36 | |||
| Sarurutrigu | |||
| Porwell comma | |||
|- | |||
| 11 | |||
| [[100/99]] | |||
| {{monzo| 2 -2 2 0 -1 }} | |||
| 17.40 | |||
| Luyoyo | |||
| Ptolemisma | |||
|- | |||
| 11 | |||
| [[121/120]] | |||
| {{monzo| -3 -1 -1 0 2 }} | |||
| 14.37 | |||
| Lologu | |||
| Biyatisma | |||
|- | |||
| 11 | |||
| [[176/175]] | |||
| {{monzo| 4 0 -2 -1 1 }} | |||
| 9.86 | |||
| Lorugugu | |||
| Valinorsma | |||
|- | |||
| 11 | |||
| [[65536/65219]] | |||
| {{monzo| 16 0 0 -2 -3 }} | |||
| 8.39 | |||
| Satrilu-aruru | |||
| Orgonisma | |||
|- | |||
| 11 | |||
| [[385/384]] | |||
| {{monzo| -7 -1 1 1 1 }} | |||
| 4.50 | |||
| Lozoyo | |||
| Keenanisma | |||
|- | |||
| 11 | |||
| [[4000/3993]] | |||
| {{monzo| 5 -1 3 0 -3 }} | |||
| 3.03 | |||
| Triluyo | |||
| Wizardharry comma | |||
|- | |||
| 13 | |||
| [[40/39]] | |||
| {{monzo| 3 -1 1 0 0 -1 }} | |||
| 43.83 | |||
| Thuyo unison | |||
| Tridecimal minor diesis | |||
|} | |||
<references/> | |||
== Scales == | |||
=== Scala file === | |||
Here is a .scl file of 8edo: [[:File:08-EDO.scl|08-edo.scl]] | |||
<pre> | |||
! 08-EDO.scl | |||
! | |||
8 EDO | |||
8 | |||
! | |||
150.00 | |||
300.00 | |||
450.00 | |||
600.00 | |||
750.00 | |||
900.00 | |||
1050.00 | |||
2/1 | |||
</pre> | |||
=== Temperaments === | |||
8edo is fairly composite, so the only step that generates a [[mos]] scale that covers every interval other than the 1 is the 3, producing scales of 332 and [[3L 2s|21212]]. In terms of temperaments, in the 5-limit this is best interpreted as [[father]], as 8edo is the highest edo that tempers out the diatonic semitone in it's [[patent val]], merging 5/4 and 4/3 into a single interval, which is also the generator. This means major and minor chords are rotations of each other, making them inaccurate but very simple, with even the 5 note mos having 3 of both and providing a functional skeleton of 5-limit harmony, albeit with some very strange enharmonic equivalences. In terms of 7-limit extensions things get even more inaccurate, as the patent val supports [[mother]], but the ideal tuning for that is much closer to [[5edo]]. The 8d val supports septimal father and [[pater]], and is much closer to the ideal tuning for both, as the extremely sharp 7 works better with the {{nowrap| 3 & 5 }}. In terms of multi-period temperaments, it makes for a near perfect [[walid]] or a much less accurate [[diminished (temperament)|diminished]] scale. | |||
== Instruments == | |||
A [[Lumatone mapping for 8edo]] is available. | |||
== Music == | |||
; [[Abnormality]] | |||
* [https://www.youtube.com/watch?v=tqgRYQxsA9U ''mushroom''] (2024) | |||
; [[Cenobyte]] | |||
* [[:File:8edo-pre-improv.ogg|8edo-pre-improv]] (2011) | |||
* [[:File:darkreflections(sketch).ogg|darkreflections(sketch)]] (2011) | |||
* [[:File:skiphop(sketch).ogg|skiphop(sketch)]] (2011) | |||
* [[:File:octo-icy-pensive(sketch).ogg|octo-icy-pensive(sketch)]], [[:File:octo-icy-pensive-echo(sketch).ogg|octo-icy-pensive-echo(sketch)]] (2011) | |||
; [[City of the Asleep]] | |||
* [http://ia600607.us.archive.org/3/items/Transcendissonance/10Malebolge-CityOfTheAsleep.mp3 "Malebolge"], from [https://cityoftheasleep.bandcamp.com/album/transcendissonance ''Transcendissonance''] (2011) | |||
; [[Milan Guštar]] | |||
* [http://www.uvnitr.cz/flaoyg/forgotten_works/spendliky.html ''Špendlíky''] (1988-2005) | |||
; [[Hideya]] | |||
* [https://www.youtube.com/watch?v=dxjBt4Umbw4 ''Like yamashiro''] (2021) | |||
* [https://www.youtube.com/watch?v=h75K1KOb5is ''Like Ensor's paintings''] (2023) | |||
; [[Nathan Ho]] | |||
* [https://www.youtube.com/watch?v=DR1SSW-kQqs ''8edo minimal techno in SuperCollider''] (2023) | |||
; [[Aaron Andrew Hunt]] | |||
* [https://aaronandrewhunt.bandcamp.com/track/fantasia-fugue-a4-in-8et "Fantasia & Fugue a4 in 8ET"], from [https://aaronandrewhunt.bandcamp.com/album/the-equal-tempered-keyboard ''The Equal-Tempered Keyboard''] (1999-2022) | |||
; [[NullPointerException Music]] | |||
* [https://www.youtube.com/watch?v=CryT-HTzrZE "Disorient"], from [https://www.youtube.com/playlist?list=PLg1YtcJbLxnwTJkG4m0BWZWxIHj7ScdNn ''Edolian''] (2020) | |||
* [https://www.youtube.com/watch?v=AErBW21bljk ''Towards Dissolution''] (2020) | |||
; [[User:Phanomium|Phanomium]] | |||
* [https://www.youtube.com/watch?v=22OKO6e6nGk ''Octahedron''] (2024) | |||
; [[Carlo Serafini]] | |||
* ''FunkEight 1'' (2013) – [http://www.seraph.it/blog_files/86557ece0348a8d042346d5e1b13e2d9-166.html blog] | [http://www.seraph.it/dep/det/FunkEight1.mp3 play] | |||
; [[Sevish]] | |||
* [https://youtu.be/1fpYEVEdcaE ''Reckoner''] (2025) | |||
; [[Jake Sherman]] | |||
* [https://www.youtube.com/watch?v=0mpDeL7iybI ''News To Me''] (2011) | |||
* [https://www.youtube.com/watch?v=HvDEoZ4LIdc ''Tomorrow Night (pop music from 2045)''] (2011) | |||
; [[Ron Sword]] | |||
* [http://www.ronsword.com/sounds/ronsword_8edo_improv.mp3 ''Acoustic Improvisation in 8EDO'']{{dead link}} | |||
; [[Stephen Weigel]] | |||
* [https://soundcloud.com/overtoneshock/tenacious-chorale-9-edo-and-8-edo-live ''Tenacious Chorale'': Movement 2] (2016) | |||
; [[Randy Winchester]] | |||
* [https://archive.org/details/jamendo-005173/07.mp3 "7. 8 / octave"], from ''[[Comets Over Flatland]]'' (2007) | |||
; [[User:Fitzgerald_Lee|Fitzgerald Lee]] | |||
* [https://youtu.be/zwRDfjLzXkU Jonky Jazz] (2025) | |||
== Ear training == | |||
8edo ear-training exercises by Alex Ness available [https://drive.google.com/a/playgroundsessions.com/folderview?id=0BwsXD8q2VCYUamtVWEgyRFA5alU&usp=sharing#list here]. | |||
== See also == | |||
* [[Octatonic scale]] - a scale based on alternating whole and half steps | |||
* [[Fendo family]] - temperaments closely related to 8edo | |||
[[Category:8-tone scales]] | |||
[[Category:Listen]] |